

DOT-4L MANUALS

L-Series, GL Series, & HP/VHP Series

Instruction Manual

XL-100, XL-160, XL-180, XL-230 and XL-240

Do not attempt to use or maintain these units until you read and understand these instructions. Refer to the Taylor-Wharton's <u>Safety First</u> booklet (TW-202) for handling cryogenic material. Do not permit untrained persons to use or maintain this equipment. If you do not understand these instructions, contact your supplier for additional information.

Manual L-SERIES Rev. 4 T-W P/N# 7950-8091 February 04, 2021

TABLE OF CONTENTS

XL-100/160/180/230/2401	
CONTAINER SAFETY2	
GENERAL INFORMATION3	,
SPECIFICATIONS4	
OPERATION6	
COMPONENT DESCRIPTION6	
WITHDRAWING LIQUID FROM THE CONTAINER8	
FILLING THE CONTAINER8	
MAINTENANCE PROCEDURE11	
CONVERTING A CONTAINER TO A DIFFERENT SERVICE(FORXL230/240)11	
PURGE PROCEDURE7	
REGULATOR MAINTENANCE (FOR XL-230/240 WITH P.B CIRCUIT	
CHECKING CONTAINER PERFORMANCE14	
FULL VIEW CONTENTS GAUGE MAINTENANCE16	
HAND VALVE REPAIR19	
SHOCK MOUNT FOOTRING (XL160/180)20	
REPLACEMENT CASTER (XL100)21	
TROUBLESHOOTING22	
REPLACEMENT PARTS24	
ACCESSORIES27	
QUALITY WARRANTY CERTIFICATE29	

CONTAINER SAFETY

WARNING

Following safety precautions are for your protection. Before performing installation, operating, or maintenance procedures read and follow all safety precautions in this section and in reference publications. Failure to observe all safety precautions can result in property damage, personal injury, or possible death. It is the responsibility of the purchaser of this equipment to adequately warn the user of the precautions and safe practices for the use of this equipment and the cryogenic fluid stored in it.

Pressure Hazard

The containers covered by this literature may contain pressure up to 230 psig (16 bar/1586 kPa.) Sudden release of this pressure may cause personal injury by issuing cold gas or liquid, or by expelling parts during servicing. Do not attempt any repair on these containers until all pressure is released, and the contents have been allowed to vaporize to ensure no pressure build-up can occur. Before performing installation, operation, or maintenance procedures, read and follow all safety precautions in this section and in reference publications. Failure to observe all safety precautions can result in property damage, personal injury, or possible death. It is the responsibility of the purchaser of this equipment to adequately warn the user of the precautions and safe practices for use of this equipment and cryogenic fluid being used.

Extreme Cold - Cover Eyes and Exposed Skin

Accidental contact of liquid methane or cold issuing gas with the skin or eyes may cause a freezing injury like frostbite. Handle the liquid so that it won't splash or spill. Protect your eyes and cover the skin where the possibility of contact with the liquid, cold pipes and cold equipment, or the cold gas exists. Safety goggles or a face shield should be worn if liquid ejection or splashing may occur or cold gas may issue forcefully from equipment. Clean, insulated gloves that can be easily removed and long sleeves are recommended for arm protection. Cuffless trousers should be worn outside boots or over the shoes to shed spilled liquid. Cryogenic liquids are extremely cold and will be at temperature below - 300°F (-184°C) under normal atmospheric pressure.

Keep Equipment Area Well Ventilated

Although some of the gases used in these containers are non-toxic and non-flammable, they can cause asphyxiation in a confined area without adequate ventilation. Any atmosphere which does not contain enough oxygen for breathing can cause dizziness, unconsciousness or even death. These gases cannot be detected by the human senses and will be inhaled normally as if it were air. Ensure there is adequate ventilation where these gases are used and store liquid containers or only in a well-ventilated area.

Replacement Parts Must be "Cleaned for Oxygen Service"- Some materials, especially non-metallic gaskets and seals, can be a combustion hazard if used in oxygen or nitrous oxide service, although they may be acceptable for use with other cryogenic liquids. Use only Taylor-Wharton recommended spare parts, and be certain parts used on oxygen or nitrous oxide equipment are marked "clean for oxygen service." For information on cleaning, consult the Compressed Gas Association (CGA) pamphlet G-4.1, "Cleaning for Oxygen Service" or equivalent industrial cleaning specifications.

CAUTION: When installing field fabricated piping, make certain a suitable safety valve is installed in each section of piping between shut-off valves. Trapped liquefied gas will expand as it warms and may burst hoses or piping causing damage or personal injury.

For more detailed information concerning safety precautions and safe practices to be observed when handling cryogenic liquids consult CGA pamphlet P-12 'Handling Cryogenic Liquids' available from the Compressed Gas Association, 14501 George Carter Way, Suite 103, Chantilly VA 20151-2923, phone: 703-788-2700, fax: 703-961-1831

GENERAL INFORMATION

The XL-100, XL-160, XL-180, XL-230 and XL-240 are vacuum-insulated, stainless steel containers designed to store and transport cryogenic liquid nitrogen. The container is designed and constructed in according to DOT 4L standards, and may be used for over the road transportation, as well as on-site storage and supply.

Handling the Container

The XL Series containers are very rugged liquid cylinders. All Cryogenic liquid containers have an inner container and an outer container with an insulated vacuum space between them. Any abuse (dents, dropping, tip-over, etc.) can affect the integrity of the container's insulation system.

Please refer specification table with regards to weight for each model respectively and you should treat the load accordingly. The attachment points provided on the XL-160 and 180 will allow you to use a hand truck or a hoist to handle these loads properly. XL-100, XL-230 and XL-240 will allow you to use caster wheel for movement. Do not attempt to move these cylinders by any other means. While moving the cylinder, the following precautions should be observed:

- i. Never lay the container on its side. Always shipped, operate, and store the unit in a vertical or upright position.
- ii. When loading or unloading the container from a truck, use a hand truck, lift gate, crane or parallel loading dock. Never attempt to manually lift the unit.
- iii. To move the container over rough surfaces, or lift the container, attach an appropriate sling to the lifting points cut into the welded support post, and use a portable lifting device that will handle the weight of the container and its contents.

~

Freight Damage Precautions. Any freight damage claims are your responsibility. Cryogenic liquid containers are delivered to your carrier from Taylor-Wharton's dock in new condition. When you receive our product, you may expect it to be in the same condition. For your own protection, take time to visually inspect each shipment in the presence of the carrier's agent before you accept delivery. If any damage is observed, make an appropriate notation on the freight bill. Then, ask the driver to sign the notation before you receive the equipment. You should decline to accept containers that show damage which may affect serviceability.

SPECIFICATIONS

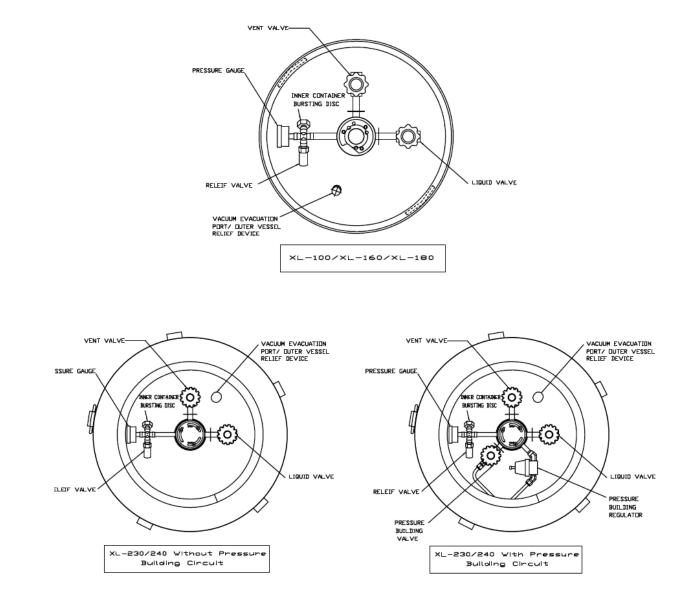
	XL-100	XL-160	XL-180
Dimensions			
Diameter, in (mm)	20 (508)	20 (508)	20 (508)
Height			
in (mm); RB	47.6 (1210)	55.7 (1415)	62.8 (1595)
in (mm); SB	N/A	N/A	N/A
Weight Empty (Nominal),			
lbs. (kg); RB	175 (79)	214 (97)	236 (107)
lbs. (kg); SB	N/A	N/A	N/A
Capacity, Gross, Liters	103	163	186
Capacity, Useable Liquid, Liters	98	160	180
Weight of Contents Maximum,			
lb. (kg)			
Base on DOT Rated Service Pressure			
Oxygen	NIL	NIL	NIL
Nitrogen	173 (78)	273 (124)	311 (141)
Argon	NÌL	NÌL	NÌL
Normal Evaporation Rate*			
(% Capacity per Day)			
Oxygen, Argon	NIL	NIL	NIL
Nitrogen	3.8%	1.3%	1.25%
Relief Valve Setting,			
psig (bar/kPa)	22 (1.5 / 152)	22 (1.5 / 152)	22 (1.5 / 152)
Inner Container Bursting Disc,			
Psig (bar / kPa)	176 (12 /	176 (12 / 1213)	176 (12 / 1213)
	1213)		
Pressure Building Circuit			
Setting, psig (bar / kPa)	N/A	N/A	N/A
Design Specifications			
TC	4LM	4LM	4LM
DOT	4L	4L	4L
Rated Service Pressure,psig	400 (0.0.1000)	400 (0 0 / 000)	400 (0.0.1.000)
(bar / kPa)	100 (6.9 / 690)	100 (6.9 / 690)	100 (6.9 / 690)

Specifications are subject to change without notice.

*Vent N.E.R. based on Useable Liquid Capacity.

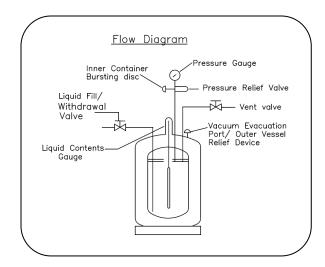
SPECIFICATIONS (continue...)

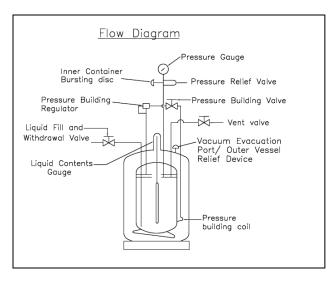
	XL-230	XL-240
Dimensions		
Diameter, in (mm)	20 (508)	26 (660)
Height		
in (mm); RB	56.1 (1425)	57.5 (1460)
in (mm); SB	61.5 (1563)	56.0 (1473)
Weight Empty (Nominal),		
lbs. (kg); RB	326 (148)	380 (172)
lbs. (kg); SB	390 (177)	410 (186)
Capacity, Gross, Liters	240	250
Capacity, Useable Liquid, Liters	230	240
Weight of Contents Maximum, lb. (kg)		
Base on DOT Rated Service Pressure		
Oxygen	517 (235)	599 (272)
Nitrogen	364 (166)	419 (190)
Argon	626 (286)	733 (332)
Normal Evaporation Rate*		
(% Capacity per Day)		
Oxygen, Argon	0.9%	0.9%
Nitrogen	1.4%	1.4%
Relief Valve Setting,		
psig (bar/kPa)	22 (1.5 / 152)	22 (1.5 / 152)
Inner Container Bursting Disc, psig (bar /		
kPa)	176 (12 / 1213)	176 (12 / 1213)
Pressure Building Circuit		
Setting, psig (bar / kPa)	15 (1.0 / 103)	15 (1.0 / 103)
Design Specifications		
TC	4LM	4LM
DOT	4L	4L
Rated Service Pressure, psig (bar / kPa)	200 (13.8 / 1380)	200 (13.8 / 1380)


Specifications are subject to change without notice.

*Vent N.E.R. based on Useable Liquid Capacity.

OPERATION


The XL-100/XL-160/XL-180/XL-230/XL-240 indicates their respective liquid storage capacities in liter of product. The XL-100, XL-160 and XL-180 are designed for liquid nitrogen service. The XL-230 and XL-240 are designed for liquid nitrogen, oxygen and argon service. The following component and circuit descriptions are pertinent to the operation of all of the containers and should be read before attempting operation. Components may be identified on the Component Location illustration.


COMPONENT DESCRIPTIONS

The LIQUID Valve

Liquid product is added or withdrawn from the container through the connection controlled by this valve. It has the CGA fitting that is required for liquid line connections. The valve is opened for fill or liquid withdrawal after connecting a transfer hose with compatible fittings to the LIQUID line connection.

The VENT Valve

This valve controls a line into the head space of the container. It is used during the fill process. The VENT valve acts as fill point during the pump transfer or to vent the head space area while liquid is filling the inner container during a pressure transfer fill through the LIQUID valve.

The Pressure Gauge

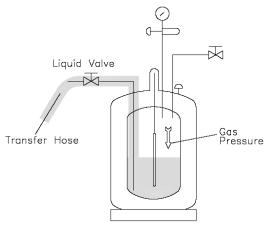
The pressure gauge displays the internal container pressure in pound-per-square-inch or in kilopascal.

The Full View Contents Gauge

The container contents gauge is a float type liquid level sensor that indicates container liquid content through a magnetic coupling to a yellow indicator. This gauge is an indication of approximate container contents only and should not be used for filling; liquid cylinder should be filled by weight.

Relief Devices

These cylinders have inner container relief valve and bursting disc with setting of 22 psig (1.5 bar/152 kPa) and 176 psig (12 bar/1213 kPa) respectively.


The Pressure Building Valve (XL-230/240 with P.B. Circuit) This valve isolates the liquid in the bottom of the container to the Pressure Building Regulator. This valve must be open to build pressure inside the container.

WITHDRAWAL LIQUID FROM THE CONTAINER

Attach a transfer hose to the LIQUID connection and open the adjacent LIQUID valve. The pressure in the container will drive liquid product out the valve as long as the container pressure exceeds that of the receiver.

The rate of liquid withdrawal from these containers is variable depending on the container pressure and the saturation temperature of the liquid. With liquid saturated at 22 psig (1.5 bar/152 kPa) withdrawal rate of up to 6 liters/min can be obtained.

CAUTION: To avoid contamination, close the LIQUID valve on an empty container before disconnecting the transfer line.

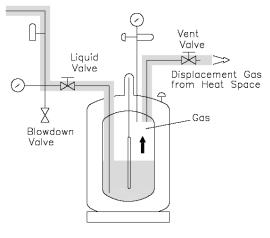
Liquid Withdrawal

FILLING THE CONTAINER

Cryogenic liquid containers that operate below 25 psig (1.7 bar/172 kPa) may be filled by weight or by volume. The latter method depends on the filler observing liquid product exiting the vent as indication that the container is full. Both methods are listed here. Be certain to observe all safety precautions associated with the handling of cryogenic liquids.

Filling the Container by Weight of Contents

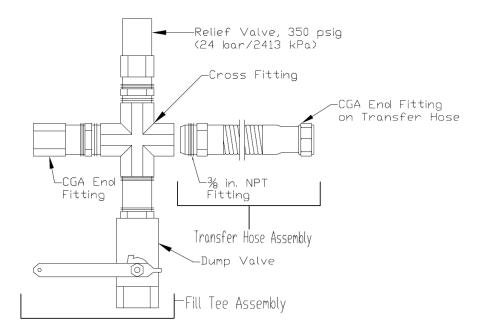
- 1. Visually inspect the container. Do not attempt to fill containers with broken or missing components.
- 2. Move the container to a filling station scale and weight it both with, and without, the fill hose attached to determine the weight of the fill line assembly. The difference is the fill line weight.
- 3. To determine the weight at which the fill should be stopped, add the desired filling weight (from the table below), the transfer line weight, and the Tare Weight from the container's data plate.
- 4. Once you have determined the proper fill weight for the container, connect a transfer hose to the LIQUID fitting from low-pressure sources of liquid.
- 5. Open the supply valve. Then, on the XL-100/160/180/230/240, open the LIQUID and VENT valves to begin the fill.
- 6. During the fill, monitor the container pressure and maintains a pressure of 10-15 psig (0.7-1 bar/69-103 kPa) by throttling the VENT valve.
- 7. When full weight is reached, closed both the LIQUID and the VENT valves.
- 8. Close the liquid supply valve and open the dump valve on fill line assembly.
- 9. Disconnect the fill line from the container and remove the container from the scale.


Filling the Container by Volume

- 1 Visually inspect the container. Do not attempt to fill containers with broken or missing components.
- 2 Connect a transfer hose to the LIQUID fitting from low pressure sources of liquid.
- 3 Open the supply valve. Then, on the XL-100/160/180/230/240, open the LIQUID and VENT valves to begin the fill.

- 4 When liquid begins to spit from the VENT valve, quickly close the LIQUID valve and then VENT valve. Both valves must be closed before the container relief valve opens.
- 5 Disconnect the fill line from the container.

Filling a liquid cylinder using the pressure transfer method is common for 22 psig (1.5 bar/152 kPa) service where the product is used for refrigerant purposes. This method may also be used for higher pressure cylinders to increase liquid holding time. A fill is accomplished by first establishing a pressure difference between the source vessel and the XL-100/160/180/230/240 (higher pressure at the bulk vessel). The pressure differential will then push the liquid from the storage vessel to the container being filled. This method is employed when no transfer pump system is available or is a greater control over liquid temperature is desired.


Filling the container is accomplished through the LIQUID valve while the VENT valve is open or partially open to control product pressure. Carefully control of pressure will control the amount of heat retained in the liquid. Lower pressure results in colder liquid transferred to the container and increases, or lengthens, product holding time.

Pressure Transfer Filling

Fill Hose Kits

Taylor-Wharton fill hose kits for the XL-100/160/180/230/240 are designed to transfer specific liquefied gases to, or from, the containers. These accessories are comprised of a Fill Tee Assembly and a Fill Hose. Cryogenic transfer hoses are constructed of stainless steel for the transfer of cryogenic liquids and are available in four or six feet (1.2 or 1.8 m) lengths with 3/8 in. NPT fitting one end and CGA service-specific female fittings on the other. A fill Tee Assembly consists of a cross fitting with a CGA end fitting, relief valve and manual dump valve.

In use, the CGA Tailpiece couples to the fill connection on the container being filled. The Relief vents pressure over 350 psig (24 bar/2413 kPa) that builds up in the fill line due to trapped liquid. The Dump Valve is used to allow the operator to blow-down the receiving container during a pump fill, or to relieve residual pressure from expanding liquid trapped in the line before disconnecting the fill line.

Fill kits are available with different combinations of hose length and fittings for specific gas service. The following charts identify the available transfer hoses and fill tee assemblies.

TRANSFER HOSE CHART

Description	Cylinder	End Fittings	Part Number
(Service/Hose Length)	Connection(s)	_	
Inert (N2, AR) Service			
4 ft. (1.2m) Stainless Steel	LIQUID or VENT Valve	CGA 295 to 3/8in. NPT	1700-9C65
6 ft. (1.8m) Stainless Steel	LIQUID or VENT Valve	CGA 295 to 3/8in. NPT	1600-9C66
Oxygen Service			
6 ft. (1.8m) Stainless Steel	LIQUID or VENT Valve	CGA 440 to 3/8in. NPT	GL50-8C53

VENT TEE CHART

The vent tee connects to a transfer hose to complete a fill line kit. Each assembly includes a 3/8 in. pipe connector to CGA fitting with 350 psig (24 bar/2413 kPa) relief valve, and a ball-type dump valve.

Service	CGA Connection	Part Number
Inert (N ₂ , AR)	CGA 295	GL50-8C60

MAINTENANCE PROCEDURE

Read the Safety Precautions in the front of this manual before attempting any repairs on these containers and also follow these additional safety guidelines while performing container maintenance.

Never work on a pressurized container. Open the vent valve as standard practice during maintenance to guard against pressure build-up from residual liquid.

Use only repair parts cleaned for oxygen service. Be certain your tools are free of oil and grease. This is a good maintenance practice and helps to ensure you do not create a combustion hazard when working on containers for oxygen or nitrous oxide service.

Leak test connections after every repair. Pressurize the container with an appropriate inert gas for leak testing. Use only approve leak test solutions and follow the manufacturer's recommendations. "Snoop" Liquid Detector is one approved solution.

WARNING: For O₂ System User: Residue of leak detectors solutions can be flammable. All surfaces to which the leak detector solutions have been applied must be adequately rinsed with portable water to remove all traces of residue. Refer CGA G-4 Section 4.9.

CONVERTING A CONTAINER TO A DIFFERENT GAS SERVICE (APPLICABLE FOR XL-230 & XL240)

XL-230/240 cylinders may be converted from one service to another within the confines of the argon, nitrogen, and oxygen service for which the containers are designed. Conversion consists of changing the end connections at the LIQUID, and VENT valves; then changing the liquid level gauge snap on indicator; and revising product decals. Parts are available in kit form for each gas service as illustrated in the following table.

Service Change Procedure

Before removing any parts, empty the container and open the vent valve to prevent any pressure buildup in the unit.

- 1. Remove the LIQUID and VENT end fittings, one at a time, with standard wrenches. Install new fittings from the Gas Service Change Kit, using Teflon tape or another oxygen compatible thread sealant.
- 2. Remove the protective cover over the liquid level gauge. Replace the snap on content scale with the one for the new gas service from the service change kit, then reinstall the protective cover.
- 3. Install new fittings for the VENT, and LIQUID connections from the Gas Service Change Kit. Leak test the fittings you just replaced and change the gas service decals to complete the conversion.

When changing gas service, install the proper fitting- DO NOT use adapters. The following procedures address the physical changes to the container only. For detailed procedures on the decontamination of the container itself, refer CGA pamphlet C-10 "Changes of Service for Cylinders including Procedures for Inspection and Contamination Removal."

Kit		Valve	Connection
Part No.	Gas Service	Name	Designation
GL50-8C35	Ovurgen	LIQUID	CGA 440
GL50-6035	Oxygen	VENT	CGA 440
GL50-8C30	Nitrogon	LIQUID	CGA 295
GL30-0C30	Nitrogen	VENT	CGA 295
GL50-8C31	Argon	LIQUID	CGA 295
GL00-0001	Argon	VENT	CGA 295

GAS SERVICE CHANGE KITS

PURGE PROCEDURE

Upon changing the cylinder service, determine the level of purity in the pressure vessel. If the pressure vessel contents purity is unacceptable, perform a product purge to reduce contaminants. The following procedure is recommended for the applications:

- 1. Attach the warm nitrogen, N2, product source to the LIQUID VALVE. Approximately 20 psig product delivery pressure should be achieved. *The positive pressure must always be maintained in the cylinder during purge procedure to prevent drawing atmospheric contaminants back into the cylinder.*
- 2. Closed all valves. Before venting to atmosphere ensure that such venting is allowed by all applicable site regulations and codes.
- 3. Open VENT VALVE and vent the inner vessel to 5 psig (34kPa) as indicated on the PRESSURE GAUGE. Close VENT VALVE.
- 4. For cylinder equipped with PRESSURE BUILDING REGULATOR, loosen the compression fitting connection on the PRESSURE BUILD REGULATOR so that N2 vented thru this connection. Then retighten the connection while the cylinder is still having positive pressure.
- 5. Repeat purge procedure 1 through 3 until an acceptable product purity is achieved.
- 6. After completion of cylinder purge, make sure that all valves are closed.

REGULATOR MAINTENANCE (for XL230/240 with P.B Circuit)

A spring-loaded regulator is employed for the pressure building circuit. This regulator can be adjusted on the container, replaced, or checked and adjusted off the container in a readily fabricated bench adjustment fixture.

Regulator Adjustment- On container

- 1. Fill the container with appropriate liquid product.
- 2. Open the Pressure Building Valve and allow the container pressure to stabilize for about an hour. Note the point where the pressure stabilizes.

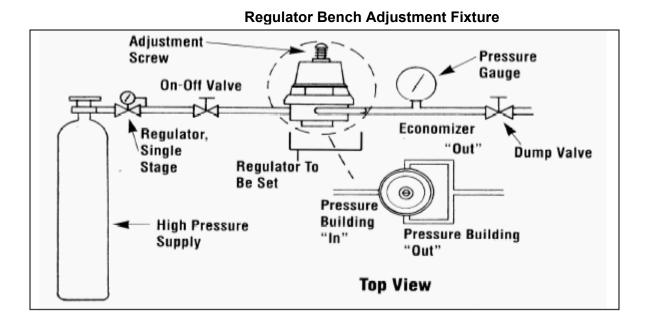
3. Adjust the screw on the top of the regulator to raise or lower the pressure to the desired point. When decreasing the setting, the pressure building valve must be closed and the container vented to a lower pressure. Then repeat step 2 in order to observe the change.

Note: One clockwise turn of the adjustment will raise the set point by approximately 30 psig (2 bar /207 kPa). See the chart below to determine the range of adjustment for the regulator you are servicing. Do not attempt to set the regulator to a pressure outside of its design range.

REGULATOR ADJUSTMENT RANGES

Part No.	Normal Setting`	Range
	15 psig	2 to 25 psig
6999-9018	1.0 bar	0.1 to 1.7 bar
	103 kPa	14 to 172 kPa

Regulator Removal or Replacement Procedure


- 1. Close manual Pressure Building valve.
- 2. Vent the container to atmospheric pressure.
- 3. Loosen and remove both the tube connections on the pressure building regulator.
- 4. Remove the regulator from the container by unscrewing the valve body and elbow from the output of the pressure building valve.
- 5. Repair the regulator and readjust its set-point using the bench test setup.
- 6. To install a replacement or readjusted regulator, apply Teflon tape to the elbow on the container and thread the valve body onto the elbow.
- 7. Reconnect the tube connections to the regulator and tighten.
- 8. Pressurize the container and check it for leaks.

Regulator Adjustment-Bench Procedure

Assemble the regulator adjustment fixture, and the regulator to be adjusted, as shown in the accompanying illustration.

- 1. Leak test joint between the high-pressure cylinder regulator and the dump valve. Joints must be leak free before proceeding.
- 2. Close the ON/OFF valve, and the dump valve.
- 3. Slightly open the high-pressure cylinder valve.
- 4. Set the high-pressure regulator above the desired set point for the Pressure Building set-point.
- 5. Slowly open ON/OFF valve and observe the downstream pressure gauge.
- 6. When the regulator under test closes, the P.B. set point may be read on the downstream pressure gauge.
- 7. Close the ON/OFF valve and open the Dump valve.
- 8. To reset the regulator, loosen the locknut on the adjusting screw. Raise the set point by turning the adjusting screw clockwise; lower the set point by turning the screw counterclockwise. After adjustment, repeat step 5 and 6 to check the setting before reinstalling the regulator on the liquid container.

Note: The regulator has directional gas flow. The arrow on the regulator body must point in direction indicated in the Bench Adjustment Fixture illustration.

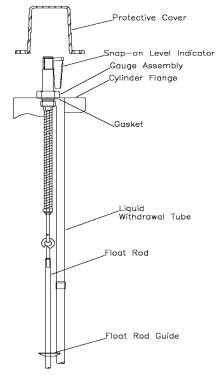
CHECKING CONTAINER PERFORMANCE

Cryogenic container is two containers, one within the other. The space between the container acts as highly efficient thermal barrier including high technology insulation, a vacuum, and a vacuum maintenance system. Each serves a very important part in the useful life of the container. The high technology is very effective in preventing radiated heat from entering the inner container. The vacuum prevents heats convection or conduction from reaching the inner container. Unfortunately, the perfect vacuum cannot be achieved since trace gas molecules begin to enter the vacuum space from the moment of manufacture. The vacuum maintenance system consists of materials which gather trace gas molecules from the vacuum space. The maintenance system can perform its function for years, but it has a limited capacity. When the vacuum maintenance system is saturated it can no longer maintain the vacuum integrity of the container. The change will be very gradual and may go unnoticed for several years. When the vacuum in the insulation space is no longer effective, the following symptoms may appear:

- 1. With liquid in the container and/or pressure building coil not in use, the outer casing will be much colder than comparative container.
- 2. Frost, indicating the liquid level, may be visible on the outer casing of the container.
- 3. The container may appear to "sweat" if the air surrounding the container is hot and humid.
- 4. The relief valve will open continuously until the container is empty.
- 5. The container will hold pressure for several days but will not hold liquid.

NER Testing

If a loss of vacuum integrity is suspected, the container's Normal Evaporation Rate (NER) should be checked. The test measures the actual product lost over time, so you can compare the results obtained to the NER value in the SPECIFICATIONS table. A test period of 48 hours is recommended, after the container is allow to stabilize, but the formula given produces a Daily NER over any time periods.


- 1. Fill the container with liquid nitrogen with the following weight:
 - XL-100 with 75 pounds (34 kg)
 - XL-160, XL-180, XL-230 and XL-240 with 150 pounds (68kg).
- 2. Close the LIQUID valve; leave the VENT valve open and allow it to remain open during test.
- 3. Allow the container to stabilize for 24 hours; then reweigh it. Record the weight, time, and date.
- 4. Reweigh 48 hours later. The test is most effective if container is not moved during this period. Record the second test date, time, and weight.

The following calculation will provide the actual Normal Evaporation Rate in pounds-per-day. Daily normal evaporation is simply half the loss over 48 hours.

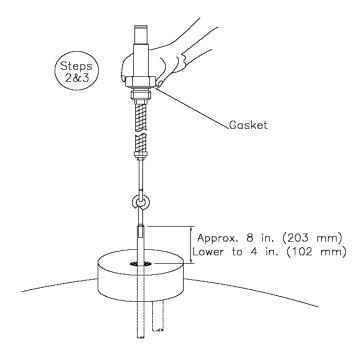
Compare the results of your test to the "as manufactured" NER value in the SPECIFICATIONS section of this manual. A Container in service should maintain an NER value of less than two times the new specification. Any test result greater than two times the listed value is indicative of a failed, or failing, vacuum. If NER is found to be high, contact Taylor-Wharton Customer Service.

FULL VIEW CONTENTS GAUGE MAINTENANCE

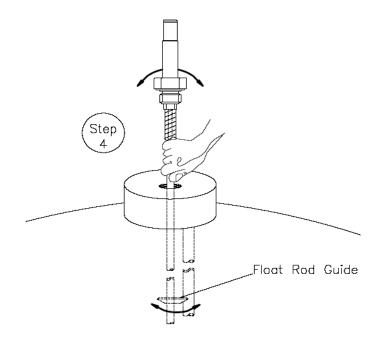
The content of these containers is measured with Full View Contents Gauge. The device consists of the gauge assembly beneath a clear plastic protective cover. When the gauge is assembled, a snap on level indicator is magnetically coupled to the top of a float rod and moves up and down with the changing level of the liquid in the container.

Removing the Full View Contents Gauge

- 1. Vent all pressure from container.
- 2. Remove the protective cover by removing three bolts from the base of the cover.
- 3. Unscrew the gauge body using a wrench on hex fitting at base of the indicator.
- 4. Lift the entire gauge assembly free of the container. The gauge assembly is long and may be very cold. Gloves should be used to protect your skin.


WARNING: Cold surfaces should never be handled with bare skin. Use gloves and other protective clothing when performing this procedure.

Contents Gauge Installation


Before installing a new gauge or repaired, inspect the gasket seals. If any damage is apparent, replace the gasket.

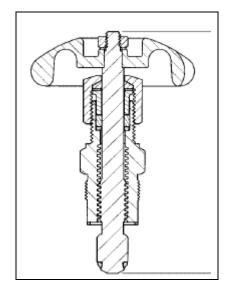
- 1. When inserting the gauge assembly, lower the float rod through the gauge opening until about 8 inches (203 mm) of the float rod remains above the container.
- 2. Grasp the clear cover portion of the gauge assembly with two fingers so that the assembly hangs free and "plumb."

3. Lower the assembly about 4 inches (102 mm) slowly and try to keep the rod in the center of the threaded entrance hole as you do. If you are careful during this portion of insertion, you will drop the float rod straight through the guide ring inside the cylinder.

4. To confirm that the rod is correctly positioned in the cylinder, stop where you can still grasp the top of the rod and try to swing the lower end from side to side.

- 5. When the rod is engaged in the guide ring, the rod will be restricted to lower end movement of about ½" inches (12.7 mm); if the you can feel greater movement, withdraw the rod to the point where its top is 8 inches (203 mm) above the gauge opening and try again.
- 6. When you are satisfied that the float rod is correctly installed, lower the assembly the rest of the way into the container until the top portion threads can be engaged.
- 7. Screw the gauge in place and hand torque to about 20 ft lbs (2.8 kgf m). Leaks check the connection of gauge to the flange.

CAUTION:


When installing the gauge assembly, care must be taken to ensure that the float rod is inserted through "guide ring" located on the liquid withdrawal line inside the container. If the gauge does not engage this ring, the contents indication will be inaccurate, or the gauge may be damaged in use.

HAND VALVE REPAIR

Hand valves are an integral part of the container, and the valve bodies rarely need replacement. However, the handwheel and internal parts of the valves are renewable. The illustration below is a view of the valve replaceable part used on Taylor-Wharton liquid container.

Valve Repair Kit Assembly

Fits: 3/8 in Rego Globe valve.

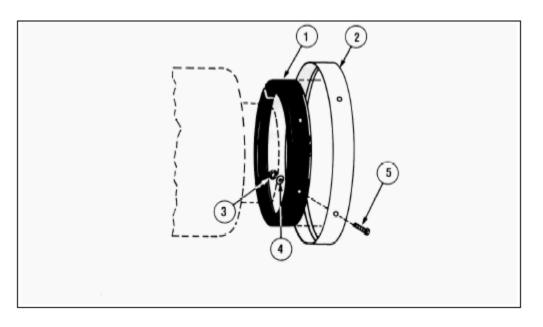
KIT PARTS- Kit P/N 1750-9C35

Valve Disassembly Instructions

- 1. Open valve by turning Handwheel counterclockwise as far as it will go to release any trapped gas in the system.
- 2. Using a large adjustable wrench to hold valve body, remove Bonnet by turning counterclockwise with a 15/16inches socket wrench that capable of developing at least 80 ft lbs (22 kgf m) torque.
- 3. Remove the handwheel assembly from the valve body and discard. Inspect body and clean if necessary; be sure interior and seal areas are free from dirt, residue and foreign particles.

CAUTION:

Do not apply force after valve is fully open. Do not scratch or mark internal surface of valve.


Valve Replacement Instructions

- 1. Thread Handwheel Assembly into valve body until properly seated.
- 2. Turn Handwheel completely clockwise to close valve. Re-pressurize container and leak check valve.

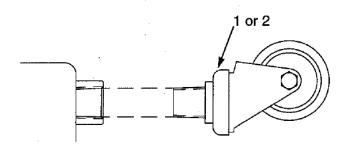
SHOCK MOUNT FOOT RING (XL160/180)

Item No.	Description	Part No.	Qty.
1	Rubber Shock Ring	XL50-4C18	1
2	Foot Ring	XL50-4C19	1
3	Hex Nut	6310-0135	4
4	Washer	6430-0125	4
5	Carriage Bolt	6620-0401	4

Shock Mount Foot Ring- Exploded View

Replacement of Shock Mount Foot Ring

- 1. Empty or transfer all contents of tank. Vent to atmospheric pressure.
- 2. Gently lay the container on its side and unbolt the four (4) carriage bolts that attached the foot ring and rubber ring to the tank.
- 3. Slide off the damaged foot ring and rubber shock ring.
- 4. Assemble rubber shock ring into new foot ring and force over shock mount ring on container. Use a rubber hammer to drive the rubber shock ring into place.
- 5. Using a $\frac{1}{2}$ inch drill bit, drill holes through rubber so that the carriage bolt slides in smoothly.
- 6. The holes in foot ring must be position in alignment with holes in shock mount ring. Using the 4 bolts, washers and nuts, fasten the new parts to the container.
- 7. After securing the shock mount ring, gently lift the container to the upright position and inspect your work.


Note: If the original Shock Mount Ring is badly damaged, we recommend that an NER test is performed to ensure that no internal damage has resulted from the impact of the shock mount ring.

Replacement of Caster(s)- XL-100 Model

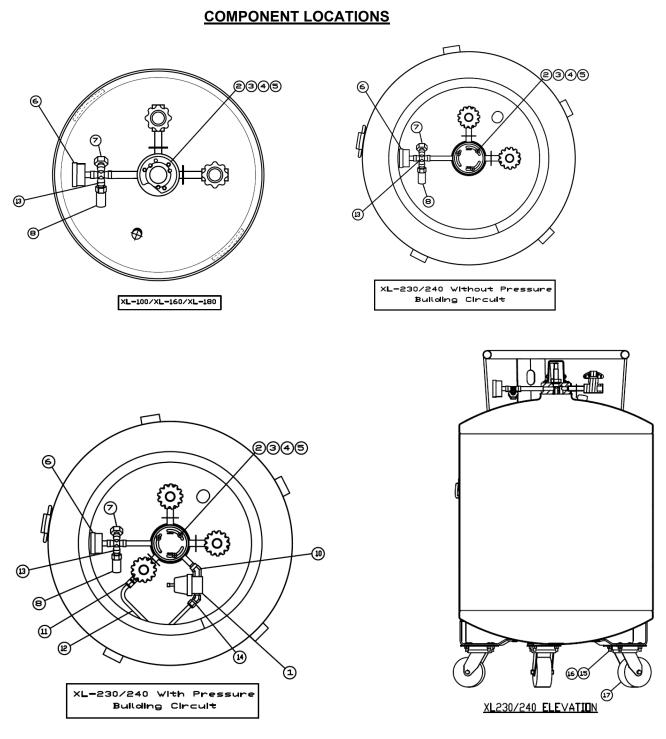
Item No.	Description	Part No.	Qty.
1	2 ¹ ⁄ ₂ " Diameter Caster	7300-9025	3
2	2 ¹ / ₂ " Diameter Caster with Brake	7300-9030	2

Replacement of Caster(s)

- 1. Empty or transfer all contents of tank. Vent to atmospheric pressure.
- 2. Gently lay the container on its side.
- 3. Loosen and remove caster(s) to be replaced.
- 4. Apply two drops of thread sealant to threaded caster post.
- 5. Insert new caster(s) into threaded tube and tighten.
- 6. After replacing and securely tightening caster(s) gently lift the tank to the uplifting position.

TROUBLESHOOTING

The following chart is provided to give you some guidance in determining the probable cause and suggested corrective action for some problems that may occur with cryogenic liquid containers.


Symptom	Possible Cause	Corrective Action
Consistently low operating	1. Relief valve open at	1. Remove and replace
pressure.	low pressure.	relief valve.
	2. Cold liquid.	2. The container will
		build pressure over
		time, or an external
		pressure source can
		be used to pressurize
		container.
No pressure shown on	1. Bad container	1. Remove and replace
container pressure gauge.	pressure gauge.	bad gauge.
	2. Open inner container	2. Remove and replace
	bursting disc.	bursting disc.
		Pressurize container
		and check relief valve
		operation.
	3. Leaks in valves or	3. Leak test and repair
	plumbing.	leaks. For valve
		repairs, see
		Maintenance section.
	4. Cold liquid.	4. Allow container to
		stand and build
		pressure.
	 Possible leak at VENT valve. 	5. Replace valve.
		6. Replace valve.
No pressure showing but	 Faulty relief valve. Broken pressure 	1. Replace pressure
container is full by weight.	gauge.	gauge.
container is fair by weight.	2. Vent valve open.	2. Close vent valve.
	3. Faulty relief valve.	3. Replace relief valve.
Container is cold and may	1. Vacuum loss. Check	1. Consult with Taylor-
have ice or frost on outer	NER.	Wharton for course of
casing. Will not hold liquid		action. Do not attempt
overnight. Relief valve is		to put additional liquid
venting gas.		container.
	2. Defective P.B.	2. Look for P.B coil
	regulator. (where	pattern in ice. Close
	applicable)	P.B. valve. Replace or
		reset regulator.
Container vents after fill but	This may be caused by	Symptom should go away
quits after a while.	residual heat vaporizing some	once container reaches
	liquid inside container and is	operating temperature and
	a normal condition.	the liquid reaches its

TROUBLESHOOTING CHART

		saturation point at container operating pressure.
Container vent gas continuously through relief valve.	Heat leak may be too great.	Perform container performance evaluation test per Maintenance section to determine if container vacuum is adequate.
Level indicator stuck ½ full. Yellow indicator ring will not move.	Float rod stuck on or in float rod guide.	Reinstall. See Contents Gauge Installation section.
Level indicator at bottom of gauge. Container full of product.	Indicator disengaged from gauge rod. Caused by dropping the container.	Recouple indicator using re- engagement ring.
Ice formation on bottom of container when P.B. valve is closed. (where applicable)	 Pressure building valve not closing properly. 	 Replace or rebuild valve.
	 Leak in pressure building system top- works. 	 Leak test piping connections and tighten fitting if needed.
Container vents through relief valve when in use.	Pressure Building Regulator set above relief valve setting. (where applicable).	Remove and reset or replace regulator.

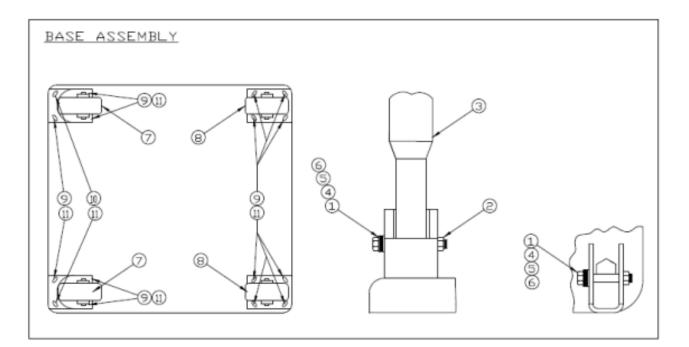
REPLACEMENT PARTS

This replacement parts list includes a recommended inventory quantity which allows you to order parts on timely basis to keep all your XL-100/160/180/230/240 containers in service. When placing orders; please use the nomenclature and part numbers in this section.

25

REPLACEMENT PARTS FOR XL-100/160/180

Index	Descriptions	Part No.	Recommended
No.			for 10 Units
2	Gasket, Glass Filled Teflon, Contents	7701-0083	5 Each
	Gauge		
3	Liquid Level Indicator Inert Spring	GL45-9C65	1 Each
	Float Rod (XL100)	GL45-9C92	1 Each
	Float Rod (XL160)	GL45-9C95	1 Each
	Float Rod (XL180)	GL50-9C97	1 Each
	Nitrogen, indicator Scale	GL45-9C75	4 Each
4	Screw, brass, 1/4inch-20 UNC x 5/8 inch	6114-1087	10 Each
5	Washer, Lock, ¼ inch, stainless steel	6460-2025	10 Each
6	Gauge, Pressure 0-60 psig (0-4	7702-6198	2 Each
	bar/0-414 kPa)		
7	Safety Head, 176 psig (12 bar/1213	L240-9C20	2 Each
	kPa)		
8	Relief valve, psig (1.5 bar/152 kPa)	1700-9069	5 Each
9	Valve Repair Kit*	1750-9C35	3 Each
13	Cross Assembly	GL55-9C30	2 Each
14	Caster, 2 ¹ / ₂ "" Dia. Wheel **	7300-9025	3 Each
15	Caster, 2 ¹ / ₂ ^{""} Dia. Wheel with	7300-9030	2 Each
	Brake**		
16	LIQUID (CGA 295)-argon/nitrogen	7355-4712	5 Each
	VENT (CGA 295)-argon/nitrogen	7355-4712	5 Each
	*Decal, Warning	1700-9C07	4 Each
	*Decal, Nitrogen service	GL55-9C51	A/R
*Nlatillus	*Decal, UN Number, Nitrogen	GL55-9C63	A/R


*Not illustrated **Applicable for XL-100 only

REPLACEMENT PARTS FOR XL-230/230PB/240/240PB

Index No.	Descriptions	Part No.	Recommended for 10 Units
1	P.B Regulator,15 psig (1 bar/103 kPa)**	2200-9C36	2 Each
2	Gasket, Glass Filled Teflon, Contents Gauge	7701-0083	5 Each
3	Liquid Level Indicator Inert Spring Float Rod	GL45-9C65 GL50-9C94	1 Each 1 Each
	Nitrogen, indicator Scale	GL45-9C75	4 Each
	Argon, indicator Scale**	GL45-9C76	4 Each
	Oxygen, indicator Scale**	GL45-9C77	4 Each
4	Screw, brass, 1/4inch-20 UNC x 5/8 inch	6114-1088	10 Each
5	Washer, Lock, ¼ inch, stainless steel	6460-2025	10 Each
6	Gauge, Pressure 0-60 psig (0-4 bar/0- 414 kPa)	7702-6198	2 Each
7	Safety Head, 176 psig (12 bar/1213 kPa)	L240-9C20	2 Each
8	Relief valve, psig (1.5 bar/152 kPa)	1700-9069 (Rego) 6913-9069 (Generant)	5 Each
9	*Valve Repair Kit	1750-9C35	3 Each
10	Street Elbow, Male, Brass 45 ^o X1/4in. MNPT ^{**}	6814-2078	2 Each
11	Connector, Male, Brass, 3/8 in. ODT- comp x 3/8in. NPT-EXT**	4570-1960	2 Each
12	Tube, P.B Line**	L240-9C01	2 Each
13	Cross Assembly	GL55-9C30	2 Each
14	Elbow, Male, 3/8 ODT x ¼ in. NPT 45°**	6814-9233	2 Each
15	Carriage Bolt	6160-4763	20 Each
16	Elastic Stop Nut	6311-1044	20 Each
17	Caster, 4" Dia. Wheel, Swivel	7300-9023	4 Each
18	LIQUID (CGA 440)- oxygen**	6514-8992	5 Each
	LIQUID (CGA 295)-argon/nitrogen	7355-4712	5 Each
	VENT (CGA 440)-oxygen**	6514-8892	5 Each
	VENT (CGA 295)-argon/nitrogen	7355-4712	5 Each
	*Decal, Warning	1700-9C07	4 Each
	*Decal, Nitrogen service	GL55-9C51	A/R
	*Decal, Oxygen service	GL55-9C52	A/R
	*Decal, Argon service	GL55-9C53	A/R

*Not illustrated **Applicable for XL230 & 240 with P.B. Circuit

Item No.	Description	Part No.	Recommended for 10 units
1	Cap screw, Hex Head, ½"-13UNC, S.S.	6164-1753	10 each
2	Hex Nut, Nylon Insert	6331-1183	10 each
3	Handle	XL65-9C31	1 each
4	Flat Washer, S.S.	6460-9024	10 each
5	Spring Washer, S.S.	6460-9025	10 each
6	Flat Washer, Teflon	6160-9026	10 each
7	Caster, Swivel with brake, 4 in. Dia. Wheel	7300-9021	5 each
8	Caster, Rigid 4 in. Dia. Wheel	7300-9022	5 each
9	Carriage Bolt,3/8"-16UNC, 1 ¼" L, S.S.	6160-4766	10 each
10	Hex Head Cap screw,3/8"-16UNC, 1" L, S.S	6164-1133	10 each
11	Elastic Stop Nut, S.S.	6368-9110	10 each

ACCESSORIES

Accessories available for use with Taylor-Wharton L-Series containers are:

-Manifold, Automatic and Manual

-Container Hand Trucks

- -Fill/Vent Tee Assemblies
 - PN: GL50-8C60

-Gas Service Changeover Kits

• PN: GL50-8C35	CGA 440	LIQUID / VENT	O2 Service
 PN: GL50-8C30 	CGA 295	LIQUID / VENT	N2 Service
 PN: GL50-8C31 	CGA 295	LIQIUD / VENT	AR Service

-Transfer Hoses (O₂, N₂, and AR)

- PN: 1700-9C65
 4 ft X CGA 295 X 3/8" NPT LIQUID / VENT N2/AR Service
- PN: 1600-9C66 6 ft X CGA 295 X 3/8" NPT LIQUID / VENT N2/AR Service
- PN: GL50-8C53 6 ft X CGA 440 X 3/8" NPT LIQUID / VENT 02 \$

N2/AR Service O2 Service

-Cryogenic Phase Separators

- PN: 1193-8C80 2 ³/₄" X 1 3/8" OD (3/8" NPT)
- PN: 1193-8C82 1 ¹/₄" X 1" OD (3/8" NPT)
- PN: 1193-8C83 1 ¹/₄" X 1/2" OD (1/8" NPT)

For additional information concerning the accessory of your choice, please consult the separate manuals on accessories or call Taylor-Wharton.

QUALITY WARRANTY CERTIFICATES TAYLOR-WHARTON XL SERIES LIQUID CYLINDERS

Taylor-Wharton warrants to the original purchaser that the internal structural support system of each XL Series Liquid Cylinder shall be free of defects in materials and workmanship for the life of the product if it is used and maintained according to Taylor-Wharton's published instructions. Taylor-Wharton warrants to the original purchaser of the following:

- Vacuum Deterioration: The Vacuum system employed on each XL Series Liquid Cylinders is warranted to maintain thermal performance or Net Evaporation Rate (NER) within 10% of Taylor-Wharton's published specifications for a period of five years from date of shipment to the initial purchaser if the product is used and maintained according to Taylor-Wharton's published instructions.
- 2. Plumbing and control Valves: All components supplied by Taylor-Wharton and used on this product are warranted to be free from defects in materials and workmanship, in the normal service for which the product was manufactured, for a period of one year from the date of shipment to the original purchaser.

To validate the warranty, the purchaser must abide to the following: 1) Immediate discontinue use of the product to further investigation. 2) Purchaser to confirm that defect is due to either of the above by written notice to Taylor-Wharton within 48 hours after confirmation of a claimed defect. Upon receiving official notice, Taylor-Wharton will act as follows: 1) Were the defect is due to vacuum deterioration, Taylor-Wharton will ask the purchaser to return such product freight prepaid to Taylor-Wharton for further evaluation to validate to warranty claim. If the claimed defect is confirmed by Taylor-Wharton's inspection will submit a report to customer, at its option and as the purchaser's sole remedy, repair or replace such product or any component part thereof or refund the original purchase price. If no defect is found or after correction of a confirmed defect, Taylor-Wharton will return the equipment at purchaser's expense. 2) If the defective is due to plumbing and control valves, Taylor-Wharton will require sending replacement parts to the purchaser for reinstallation by purchaser.

This warranty is voided by alterations or by repairs of others. Taylor-Wharton shall not be liable under this warranty, or otherwise, for defects caused by negligence, abuse or misuse of the product, corrosion, fire, heat, or the effects of normal wear. Any related components or other equipment manufactured by others which may be sold with Taylor-Wharton's products are not covered by this warranty.

THIS WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES SET FORTH HEREIN ARE EXCLUSIVE. TAYLOR-WHARTON SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES RESULTING FROM THE DELIVERY, USE OR FAILURE OF THE PRODUCT (INCLUDING LOSS OF ANY MATERIAL STORED IN THE PRODUCT), OR FROM ANY OTHER CAUSE WHATSOEVER BY ACCEPTING DELIVERY OF THE PRODUCT SOLD HEREUNDER, THE PURCHASER ACKNOWLEDGES THAT THIS LIMITATION OF REMEDIES IS REASONSABLE AND ENFORCEABLE. IN NO EVENT SHALL TAYLORWHARTON'S LIABILITY EXCEED THE PURCHASE PRICE FOR THE PRODUCT.

Taylor-Wharton Malaysia Sdn Bhd (776817-V) Lot PT 5073, 5076 & 5077, Jalan Jangur 28/43, Hicom Industrial Estate, Section 28, 40400 Shah Alam, Malaysia www.twcryo.com

Instruction Manual

XL-45, XL-50, XL-55, XL-60, XL-65 and XL-70

Do not attempt to use or maintain these units until you read and understand these instructions. Refer to the Taylor-Wharton's <u>Safety-First</u> booklet (TW-202) for handling cryogenic material. Do not permit untrained persons to use or maintain this equipment. If you do not understand these instructions, contact your supplier for additional information.

Manual GL-SERIES Rev.3 T-W P/N# 7950-8092 January 29, 2021

TABLE OF CONTENTS

XL-45/50/55/60/65/70	1
CONTAINER SAFETY	2
GENERAL INFORMATION	3
SPECIFICATIONS	4
OPERATION	6
COMPONENT DESCRIPTION WITHDRAWING GAS FROM THE CONTAINER WITHDRAWING LIQUID FROM THE CONTAINER FILLING THE CONTAINER	10 10
MAINTENANCE PROCEDURE	15
CONVERTING A CONTAINER TO DIFFERENT GAS SERVICE PURGE PROCEDURE REGULATOR MAINTENANCE CHECKING CONTAINER PERFORMANCE FULL VIEW CONTENTS GAUGE MAINTENANCE HAND VALVE REPAIR SHOCK MOUNT FOOTRING	16 17 18 20 22
TROUBLESHOOTING	25
REPLACEMENT PARTS	27
ACCESSORIES	31
QUALITY WARRANTY CERTIFICATE	32

CONTAINER SAFETY

WARNING

Following safety precautions are for your protection. Before performing installation, operating, or maintenance procedures read and follow all safety precautions in this section and in reference publications. Failure to observe all safety precautions can result in property damage, personal injury, or possible death. It is the responsibility of the purchaser of this equipment to adequately warn the user of the precautions and safe practices for the use of this equipment and the cryogenic fluid stored in it.

Pressure Hazard

The containers covered by this literature may contain pressure up to 230 psig (16 bar/1586 kPa.) Sudden release of this pressure may cause personal injury by issuing cold gas or liquid, or by expelling parts during servicing. Do not attempt any repaire on these containers until all pressure is released, and the contents have been allowed to vaporize to ensure no pressure buil-up can occur. Before performing installation, operation, or maintenance procedures, read and follow all safety precautions in this section and in reference publications. Failure to observe all safety precautions can result in property damage, personal injury, or possible death. It is the responsibility of the purchaser of this equipment to adequately warn the user of the precautions and safe practices for use of this equipment and cryogenic fluid being used.

Extreme Cold - Cover Eyes and Exposed Skin

Accidental contact of liquid methane or cold issuing gas with the skin or eyes may cause a freezing injury similar to frostbite. Handle the liquid so that it won't splash or spill. Protect your eyes and cover the skin where the possibility of contact with the liquid, cold pipes and cold equipment, or the cold gas exists. Safety goggles or a face shield should be worn if liquid ejection or splashing may occur or cold gas may issue forcefully from equipment. Clean, insulated gloves that can be easily removed and long sleeves are recommended for arm protection. Cuffless trousers should be worn outside boots or over the shoes to shed spilled liquid. Cryogenic liquids are extremely cold and will be at temperature below - 300°F (-184°C) under normal atmospheric pressure.

Keep Equipment Area Well Ventilated

Although some of the gases used in these containers are non-toxic and non-flamable, they can cause asphyxiation in a confined area without adequate ventilation. Any atmosphere which does not contain enough oxygen for breathing can cause dizziness, unconsciousness or even death. These gases cannot be detected by the human senses and will be inhaled normally as if it were air. Ensure there is adequate ventilation where these gases are used and store liquid containers or only in a well-ventilated area.

Replacement Parts Must be "Cleaned for Oxygen Service"- Some materials, especially non-metallic gaskets and seals, can be a combustion hazard if used in oxygen or nitrous oxide service, although they may be acceptable for use with other cryogenic liquids. Use only Taylor-Wharton recommended spare parts, and be certain parts used on oxygen or nitrous oxide equipment are marked "clean for oxygen service." For information on cleaning, consult the Compressed Gas Association (CGA) pamphlet G-4.1, "Cleaning for Oxygen Service" or equivalent industrial cleaning specifications.

CAUTION: When installing field fabricated piping, make certain a suitable safety valve is installed in each section of piping between shut-off valves. Trapped liquefied gas will expand as it warms and may burst hoses or piping causing damage or personal injury.

For more detailed information concerning safety precautions and safe practices to be observed when handling cryogenic liquids consult CGA pamphlet P-12 'Handling Cryogenic Liquids' available from the

Compressed Gas Association, 14501 George Carter Way, Suite 103, Chantilly VA 20151-2923, phone: 703-788-2700, fax: 703-961-1831.

GENERAL INFORMATION

The XL-45, XL-50, XL-55, XL-60, XL-65 and XL-70 are vacuum-insulated, stainless steel containers design to store and transport cryogenic liquid oxygen, nitrogen and argon with continuous flow rates up to 350 cfh (9.2 cu.m/h) with a delivery pressure of approximately 100 psig (6.9 bar/690 kPa). The container is designed and constructed in according with DOT 4L standards and may be used for over the road transportation of Ar, O2, & N2 as well as on-site storage and supply in wide range of applications.

Handling the Container

The XL Series containers are very rugged liquid cylinders. All Cryogenic liquid containers have an inner container and an outer container with an insulated vacuum space between them. Any abuse (dents, dropping, tip-over, etc.) can affect the integrity of the container's insulation system.

Please refer specification table with regard to weight for each model respectively and you should treat the load accordingly. The attachment points provided on the XL-45/50/55 will allow you to use a hand truck or a hoist to handle these loads properly. XL-60, XL-65 and XL-70 will allow you to use caster wheel for movement. Do not attempt to move these cylinders by any other means. While moving the cylinder, the following precautions should be observed:

- iv. Never lay the container on its side. Always ship, operate, and store the unit in a vertical, or upright position.
- v. When loading or unloading the container from a truck, use a hand truck, lift gate, crane or parallel loading dock. Never attempt to manually lift the unit.
- vi. To move the container over rough surfaces, or lift the container, attach an appropriate sling to the lifting points cut into the welded support post, and use a portable lifting device that will handle the weight of the container and its contents.

Freight Damage Precautions: Any freight damage claims are your responsibility. Cryogenic liquid containers are delivered to *your carrier from* Tavlor-Wharton's dock in new condition. When you receive our product, you may expect it to be in the same condition. For your own protection, take time to visually inspect each shipment in the presence of the carrier's agent before you accept delivery. If any damage is observed, make an appropriate notation on the freight bill. Then, ask the driver to sign the notation before you receive the equipment. You should decline to accept containers that show damage which may affect serviceability.

SPECIFICATIONS

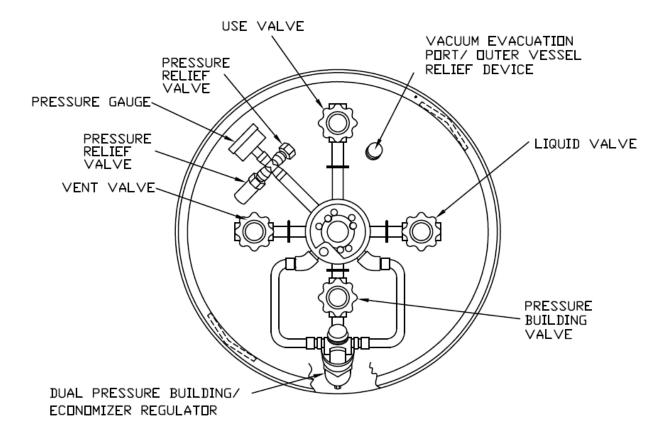
	XL-45	XL-50	XL-55
Dimensions			
Diameter, in (mm)	20 (508)	20 (508)	20 (508)
Height, in (mm)			
RND BASE	60 (1525)	62.3 (1582)	65 (1650)
SQ. BASE	NIL	NIL	NIL
Weight Empty (Nominal), lb (kg)			
RND BASE	244 (111)	253 (115)	262 (119)
SQ. BASE	NIL	NIL	NIL
Capacity, Gross, Liters	180	193	210
Capacity, Useable Liquid, Liters	169	181	200
Weight of Contents Maximum			
Base on DOT Rated Service Pressure			
lb. (kg)			
Oxygen	389 (176)	416 (189)	454 (206)
Nitrogen	274 (124)	293 (133)	319 (145)
Argon	472 (214)	505 (229)	551 (250)
Normal Evaporation Rate*			
(% Capacity per Day)			
Oxygen	1.2%	1.1%	1.1%
Nitrogen	1.9%	1.8%	1.7%
Argon	1.2%	1.1%	1.1%
Gas Flow Rate @ NTP (STP)**			
cfh (cu. m/h)			
Oxygen	350 (9.2)	350 (9.2)	350 (9.2)
Nitrogen	350 (9.2)	350 (9.2)	350 (9.2)
Argon	350 (9.2)	350 (9.2)	350 (9.2)
Relief Valve Setting, psig (bar/kPa)	230 (15.9 / 1590)	230 (15.9 / 1590)	230 (15.9 / 1590)
Inner Container Bursting Disc,			
Psig (bar / kPa)	360 (24.8 / 2480)	360 (24.8 / 2480)	360 (24.8 / 2480)
Dual Pressure Building/			
Economizer Regulator***			
Pressure Building Setting, psig			
(bar / kPa)	125 (8.6 / 862)	125 (8.6 / 862)	125 (8.6 / 862)
Economizer Setting, psig			
(bar / kPa)	145 (10 / 1000)	145 (10 / 1000)	145 (10 / 1000)
Design Specifications			
TC	4LM	4LM	4LM
DOT	4L	4L	4L
Gaseous Capacity			
Base on DOT Rated Service Pressure			
@ NTP, cu.ft. (STP, cu.m)	4600 (400)	E00E (400)	EAQA (444)
Oxygen	4688 (123)	5025 (132)	5484 (144)
Nitrogen	3771 (99)	4046 (106)	4402 (116)
Argon	4558 (120)	4884 (128)	5331 (140)

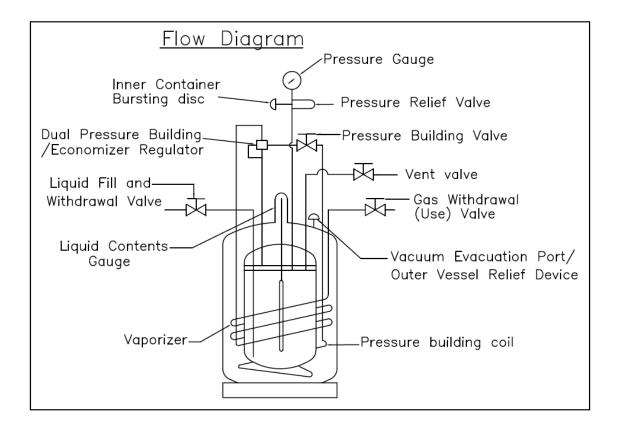
SPECIFICATIONS (continue)

	XL60 (TMXL230)	XL-65	XL70
Dimensions			
Diameter, in (mm)	26 (660)	26 (660)	26 (660)
Height, in (mm)	(~ /
RND BASE	56.10 (1425)	57.5 (1460)	61.5 (1562)
SQ. BASE	61.50 (1563)	58.0 (1473)	62.0 (1575)
Weight Empty (Nominal), lb (kg)			
RND BASE	326 (148)	335 (152)	344 (156)
SQ. BASE	390 (177)	368 (167)	376 (171)
Capacity, Gross, Liters	240	250	280
Capacity, Useable Liquid, Liters	230	240	265
Weight of Contents Maximum			
Base on DOT Rated Service Pressure			
lb. (kg)			
Oxygen	517 (235)	543 (246)	606 (275)
Nitrogen	364 (166)	382 (173)	426 (193)
Argon	628 (285)	659 (299)	735 (333)
Normal Evaporation Rate*			
(% Capacity per Day)			
Oxygen	0.9%	1.1%	1.0%
Nitrogen	1.4%	1.7%	1.8%
Argon	0.9%	1.1%	1.0%
Gas Flow Rate @ NTP (STP)**			
cfh (cu. m/h)			
Òxygen ′	350 (9.2)	350 (9.2)	350 (9.2)
Nitrogen	350 (9.2)	350 (9.2)	350 (9.2)
Argon	350 (9.2)	350 (9.2)	350 (9.2)
Relief Valve Setting, psig (bar/kPa)	230 (15.9 / 1590)	230 (15.9 / 1590)	230 (15.9 / 1590)
Inner Container Bursting Disc,			, , , , , , , , , , , , , , , , , , ,
Psig (bar / kPa)	360 (24.8 / 2480)	360 (24.8 / 2480)	360 (24.8 / 2480)
Dual Pressure Building/			· · · · · · · · · · · · · · · · · · ·
Economizer Regulator***			
Pressure Building Setting, psig (bar / kPa)	125 (8.6 / 862)	125 (8.6 / 862)	125 (8.6 / 862)
Economizer Setting, psig (bar / kPa)		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
	145 (10 / 1000)	145 (10 / 1000)	145 (10 / 1000)
Design Specifications			, , , , , , , , , , , , , , , , , , ,
тс	4LM	4LM	4LM
DOT	4L	4L	4L
Gaseous Capacity			
Base on DOT Rated Service Pressure			
@ NTP, cu.ft. (STP, cu.m)			
Oxygen	6245 (164)	6558 (186)	7316 (207)
Nitrogen	5023 (133)	5275 (149)	5885 (167)
Argon	6077 (160)́	6379 (181)́	7116 (202)

Specification are subject to change without notice.

*Vent N.E.R. based on Useable Liquid Capacity.


**Container pressure at or above factory Dual Pressure Building/Economizer Regulator setting.


***Regulator has a pressure delta of 20 psig (1.4bar/138kPa)

OPERATION

The XL-45 will store up to 169 liters of product; the XL-50 up to 181 liters, the XL-55 up to 200 liters, the XL-60 up to 230 liters, the XL-65 up to 240 liters, and 265 liters for XL-70. All these cylinders can deliver either liquid or gas. The following component and circuit descriptions are pertinent to the operation of all the containers and should be read before attempting operation. Components may be identified on the Component Location illustration.

COMPONENT DESCRIPTIONS

Internal Vaporizer

A liquid container for gas service must have an internal heat exchanger that functions as a gas vaporizer coil to convert liquid product to gas continuously during withdrawal. The cylinder utilizes an internal heat exchanger that is inside the vacuum space attached to the container's outer casing. It provides a means of intruducing heat from outside container's insulated jacket, to vaporize liquid as gaseous product is withdrawn. The capacity of this circuit is sufficient to vaporize product flow rates up to 350 cfh @ NTP (9.2 cu.m/h @STP). If graeter continuous demand is put on the vaporizer, an external vaporizer should be added to properly warm the gas and avoid malfunction, or damage, to gas regulator, hoses, and other downstream components.

Pressure Building

A Pressure Building circuit is used to ensure sufficient driving pressure during high withdrawal periods. This fuction is actuated by opening a hand valve that create a path from the liquid in the bottom of the container, through the Preeure Building Regulator, to the gas space in the top. When the pressure building valve is open, and the container pressure is below the pressure building regulatoe setting, liquid taken from the inner container is vaporized in the heat exchanger which is inside the outer casing. The expanding gas is fed into the upper section of the container to build pressure. The resulting pressure will drive either the liquid or gas delivery system.

Pressure Building is not normally required unless container pressure drops below the gas output pressure desired. If, for example, the container pressure gauge reads 75 psig (5 bar/517kPa), and your gas pressure requirement is 100 psig (6.9 bar/690 kPa), the pressure building valve may be opened to build container pressure to 125 psig (8.6 bar/862 kPa).

Economizer

An economizer circuit withdraws gas preferentially from the head space over the liquid in the containergas that otherwise lost to venting. Excess pressure in the head space of the container is relief by allowing gas to flow from this area direct to the USE valve outlet while gas is withdrawn from the container; yet normal operating pressure is preserved to ensure uninterrupted product delivery. The economizer is automatic and require no operator attention.

Note: The economizer and pressure building fuctions are controlled by a single dual action regulator. The pressure delta between the pressure building setpoint and the economizer setpoint is approximately 20 psig (1.4 bar/138 kPa). This delta cannot be altered.

The USE Valve

This valve controls the gas outlet that allows product withdrawal through the internal vaporizer. It has the required CGA connection that matches the gas service for which the container is configured.

The LIQUID Valve

Liquid product is added or withdrawn from the container through the connection controlled by this valve. It has the CGA fitting that is reqired for liquid line connections. The valve is opened for fill or liquid withdrawal after connecting a transfer hose with compatible fittings to the LIQUID line connection.

The PRESSURE BUILDING Valve

This valve isolates the liquid in the bottom of the container to the Dual Pressure Building/Economizer Regulator. This valve must be open to build pressure inside the container.

The VENT Valve

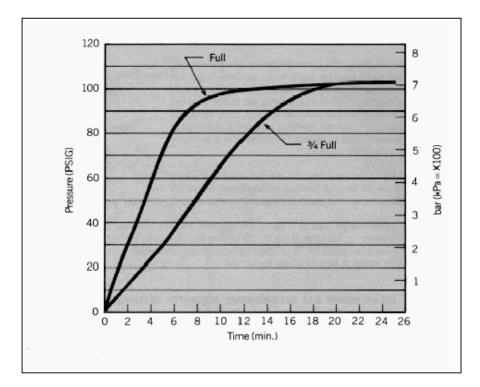
This valve controls a line into the head space of the container. It is used during the fill process. The VENT valve act as fill point during the pump transfer, or to vent the head space area while liquid is filling the inner container during a pressure transfer fill through the LIQUID valve.

The Pressure Gauge

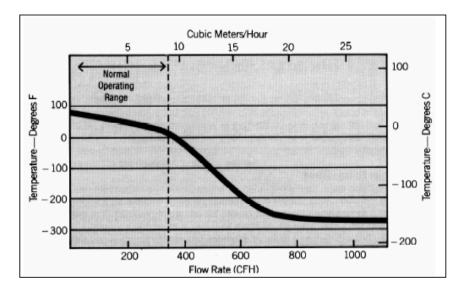
The pressure gauge displays the internal container pressure in pound-per-square-inch or in kilo Pascal.

The Full View Contents Gauge

The container contents gauge is a float type lequid level sensor that indicates container liquid content through a magnatic coupling to a yellow indicator band. This gauge is an indication of approximate container contents only and should not be used for filling; liquid cylinder should be filled by weight.


Relief Devices

These cylinders have a gas service relief valve and inner container bursting disc with setting of 230 psig (16 bar/1586 kPa) and 360 psig (24.8 bar/248 kPa) respectively. A 22 psig (1.5 bar/152 kPa) relief valve is available for liquid delivery applications.


Relief Valve Setting	Pressure Building Setting	Economizer Setting	Normal Operating Range
22 psig	N/A	N/A	0-22 psig
1.5 bar	N/A	N/A	0-1.5 bar
152 kPa	N/A	N/A	0-152 kPa
230 psig	125 psig	145 psig	75-175 psig
16 bar	8.6 bar	10 bar	5-12 bar
1586 kPa	862 kPa	1000 kPa	517-1207 kPa

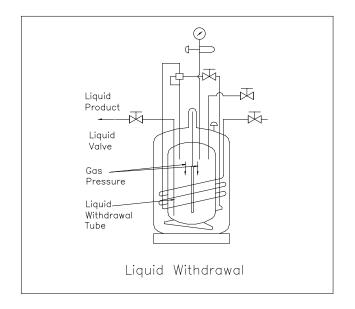
RELIEF VALVES AND RECOMMENDED REGULATOR SETTING

Pressure Building Rate Graph

Vaporizer Performance Graph

WITHDRAWAL GAS FROM THE CONTAINER

To withdraw gas from these cylinders, connect a suitable pressure regulator to the USE connection, and the output of the regulator to your external equipment. Then open the USE and the PRESSURE BUILDING valves. When the container pressure reaches 125 psig (8.6 bar/862 kPa), set the pressure regulator for the desired delivery pressure.


Increasing Gas Supply Capacity –Two or more liquid containers may be manifolded together. Accessory manifolds are available for use in creating a higher capacity gas supply system. These cylinders can supply gas at flowrates up to 350 cfh @ NTP (9.2 cu.m/h @STP) using only its internal vaporizer. At low flowrates, the gas supplied will be at nearly ambient temperature. As the demand is increased, the gas will become proportionately colder. If greater vaporizing capacity is required, an accessory external vaporizer is available. When an external vaporizer is used, it must be connected to the USE valve and the regulator moved to the output of the external vaporizer.

CAUTION: When withdrawing gas from the cylinder, the capacity of the internal vaporizer can be exceeded. If gas is withdrawn at rates greater than the vaporizer capacity, liquid or very cold gas will be discharged. Severe damage to external equipment could result from the extreme cold.

WITHDRAWAL LIQUID FROM THE CONTAINER

Attach a transfer hose to the LIQUID connection and open the adjacent LIQUID valve. The pressure in the container will drive liquid product out the valve as long as the container pressure exceeds that of the receiver.

The rate of liquid withdrawal from these containers is variable depending on the gas phase pressure and the saturation of the liquid.

CAUTION: To avoid contamination, close the LIQUID valve on an empty container before disconnecting the transfer line.

FILLING THE CONTAINER

Cryogenic liquid containers must always be filled by weight to ensure there is enough gas head space (ulage) for liquid to expand as it warms. Using the procedure below, first determine the proper filled weight of each container. The weight derived is then used in either the Pump Transfer or Pressure Transfer filling procedures that follow.

Determine Proper Fill Weight

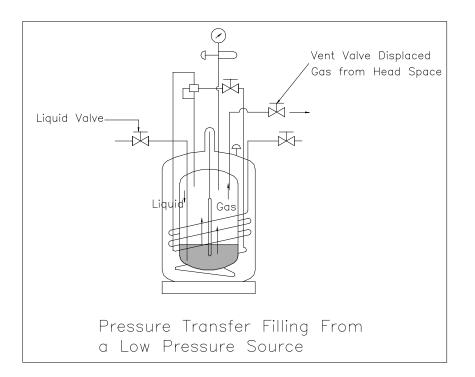
1. Visually inspect the container. Do not attempt to fill containers with broken or missing components.

2. Move the container to a filling station scale and weight it both with, and without, the fill hose attached to determine the weight of the fill line assembly. The difference is the fill line weight.

3. To determine the weight at which the fill should be stopped, add the desired filling weight (from the table below), the transfer line weight, and the Tare Weight from the container's data plate.

	XL-45	XL-50	XL-55	XL-60	XL-65	XL-70
ARGON	471 lb.	505 lb.	551 lb.	628 lb.	659 lb.	735 lb.
ARGON	(214 kg)	(229 kg)	(250 kg)	(285 kg)	(299 kg)	(333 kg)
NITROGEN	273 lb.	293 lb.	319 lb.	364 lb.	382 lb.	426 lb.
NITRUGEN	(124 kg)	(133 kg)	(145 kg)	(166 kg)	(173 kg)	(193 kg)
OXYGEN	388 lb.	417 lb.	454 lb.	517 lb.	543 lb.	606 lb.
UNIGEN	(176 kg)	(189 kg)	(206 kg)	(235 kg)	(246 kg)	(275 kg)

FILLING WEIGHTS

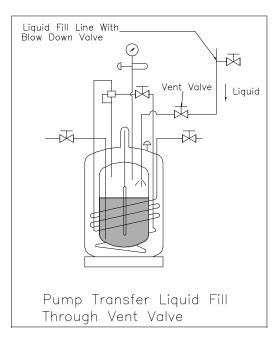

Pressure Transfer Filling

Filling a liquid cylinder using the pressure transfer method is common for 22 psig (1.5 bar/152 kPa) service where the product is used for refrigerant purposes. This method may also be used for higher pressure cylinders to increase liquid holding time. A fill is accomplished by first establishing a pressure difference between the source vessel and the XL-45/50/55/60/65/70 (higher pressure at the bulk vessel). The pressure differential will then push the liquid from the storage vessel to the container being filled. This method is employed when no transfer pump system is available or is a greater control over liquid temperature is desired.

Filling the container is accomplished through the LIQUID valve while the VENT valve is open or partially open to control product pressure. Careful control of pressure will controll the amount of heat retained in the liquid. Lower pressure results in colder liquid transferred to the container and increases, or lengthens, product holding time.

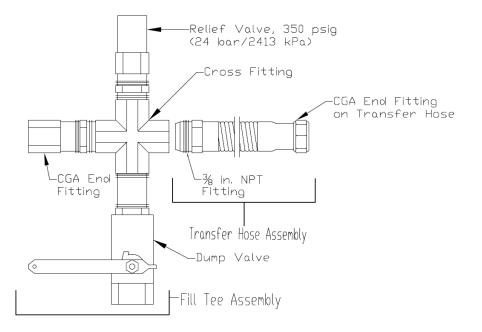
Pressure Transfer Filling Procedure (Low Pressure Source)- Once you have determined the proper full weight for a container, connect a transfer hose to the LIQUID fitting from a low- pressure source of liquid.

- 1. Open the supply valve. Then, open the LIQUID and VENT valves of the cylinder to begin the fill.
- 2. During the fill, monitor the container pressure and maintain a pressure of 10-15 psig (0.7-1 bar/69-103 kPa) by throttling the VENT valve.
- 3. When full weight is reached, closed both the LIQUID and the VENT valves.
- 4. Close the liquid supply valve and open the dump valve on fill line assembly.
- 5. Disconnect the fill line from the container and remove the container from the scale.



Pump Transfer Filling Method

When a pump is used for filling liquid containers, the fill may be accomplished through either the VENT valve or LIQUID valve. Filling through the VENT valve recondenses gas in the area over the liquid in the cylinder and reduces product loss during the filling. This method will also result in liquid near the saturation temperature of the supply vessel. Filling through the LIQUID valve may provide colder liquid and longer holding time before the liquid warms to the point where the venting begins; but will require more frequent venting and greater product loss.


Pump Transfer Filling Procedure - This method applies only to containers in gas service that are equipped with a 230 psig (16 bar/1586 kPa), 350 psig (24 bar/2413 kPa) or 500 psig (34 bar/3447 kPa) relief valve. Liquid is admitted through the VENT valve and recondenses gas in the head space during the fill. The fill line is connected from the liquid supply to the VENT valve on the cylinder. Both the fill line and the container should be precooled prior to beginning the fill process. Proper full weight is determined by the previously explained method.

- 1. Open the supply valve. Then, on the container being filled, open only the VENT valve to begin the fill. Start the pump at this time.
- 2. Observe the container pressure closely. If the pressure approaches the relief valve setting (or the pump pressure rating) stop the fill process at the supply and open the fill line dump valve to vent excess pressure. As soon as the pressure has dropped to a level that will allow you to resume the fill, close the dump valve and restart the pump (or reopen the supply valve).
- 3. When full weight is reached, close the VENT valve. Stop pump (where applicable), close liquid supply valve and open the dump valve on fill line assembly to vent trapped liquid.
- 4. Disconnect the fill line from the container and remove the container from the scale.

Fill Hose Kits

Taylor-Wharton fill hose kits for the XL-45/50/55/60/65/70 are designed to transfer specific liquefied gases to, or from, the containers. These accessories are comprised of a Fill Tee Assembly and a Fill Hose. Cryogenic transfer hoses are constructed of stainless steel for the transfer of cryogenic liquids and are available in four or six feet (1.2 or 1.8 m) lengths with 3/8 in.NPT fitting one one end and CGA service-specific female fittings on the other. A fill TeeAssembly consists of a cross fitting with a CGA end fitting, relief valve and manual dump valve.

In use, the CGA Tailpiece couples to the fill connection on the container being filled. The Relief vents pressure over 350 psig (24 bar/2413 kPa) that builds up in the fill line due to trapped liquid. The Dump Valve is used to allow the operator to blow-down the receiving container during a pump fill, or to relieve residual pressure from expanding liquid trapped in the line before disconnecting the fill line.

Fill kits are avaiable with different combinations of hose length and fittings for specific gas service. The following chart identifies the available transfer hoses and fill tee assemblies.

Description	Cylinder	End Fittings	Part Number
(Service/Hose Length)	Connection(s)	-	
Inert (N2, Ar) Service			
4 ft. (1.2m) Stainless Steel	LIQUID or VENT Valve	CGA 295 to 3/8in. NPT	1700-9C65
6 ft. (1.8m) Stainless Steel	LIQUID or VENT Valve	CGA 295 to 3/8in. NPT	1600-9C66
6 ft. (1.8m) Stainless steel	USE Valve	CGA 580 to 3/8in. NPT	GL50-8C51
Oxygen Service			
6 ft. (1.8m) Stainless Steel	LIQUID or VENT Valve	CGA 440 to 3/8in. NPT	GL50-8C53
6 ft. (1.8m) Stainless steel	USE Valve	CGA 540 to 3/8in. NPT	GL50-8C56

TRANSFER HOSE CHART

VENT TEE CHART

The vent tee connects to a transfer hose to complete a fill line kit. Each assembly includes a 3/8 in. Pipe connector to CGA fitting with 350 psig (24 bar/2413 kPa) relief valve, and a ball-type dump valve.

Service	CGA Connection	Part Number
Inert (N2, Ar)	CGA 295	GL50-8C60

MAINTENANCE PROCEDURE

Read the Safety Precautions in the front of this manual before attempting any repairs on these containers and follow these additional safety guidelines while performing container maintenance.

Never work on a pressurized container. Open the vent valve as standard practice during maintenance to guard against pressure build-up from residual liquid.

Use only repair parts cleaned for oxygen service. Be certain your tools are free of oil and grease. This is a good maintenance practice and helps to ensure you do not create a combustion hazard when working on containers for oxygen or nitrous oxide service.

Leak test connections after every repair. Pressurize the container with an appropriate inert gas for leak testing. Use only approved leak test solutions and follow the manufacturer's recommendations. "Snoop" Liquid Detector is one approved solution.

WARNING: For O2 System User: Residue of leak detectors solutions can be flammable. All surfaces to which the leak detector solutions have been applied must be adequately rinsed with portable water to remove all traces of residue. Fereence CGA G-4. Section 4.9.

CONVERTING A CONTAINER TO A DIFFERENT GAS SERVICE

XL-45/50/55/60/65/70 Cylinders may be converted from one service to another within the confines of the argon, nitrogen, and oxygen service for which the containers are designed. Conversion consists of changing the end connections at the USE, LIQUID, and VENT valves; then changing the liquid level gauge snap on indicator; and revising product decals. Parts are available in kit form for each gas service as illustrated in the following table.

Service Change Procedure

Before romoving any parts, empty the container and open the vent valve to prevent any pressure buildup in the unit.

- 4. Remove the LIQUID, VENT, and USE end fittings, one at a time, with standard wrenches. Install new fittings from the Gas Service Change Kit, using Teflon tape or another oxygen compatible thread sealant.
- 5. Remove the protective cover over the liquid level gauge. Replace the snap-on content scale with the one for the new gas service from the service change kit, then reinstall the protective cover.

6. Install new fittings for the USE, VENT, and LIQUID connections from the Gas Service Change Kit. Leak test the fittings you just replaced and change the gas service decals to complete the convertion.

CAUTION:

When changing gas service, install the proper fitting- DO NOT use adapters. The following procedures address the physical changes to the container only. For detailed procedures on the decontamination of the container itself, refer CGA pamphlet C-10 "Changes of Service for Cylinders including Procedures for Inspection and Contamination Removal."

GAS SERVICE CHANGE KITS				
Kit Part No.	Gas Service	Valve Name	Connection Designation	
GL50-8C35	Oxygen	LIQUID VENT	CGA 440 CGA 440	
		USE LIQUID	CGA 540 CGA 295	
GL50-8C30	Nitrogen	VENT	CGA 295 CGA 580	
GL50-8C31	Argon	LIQUID VENT USE	CGA 295 CGA 295 CGA 580	

PURGE PROCEDURE

After changing the cylinder service, determine the level of purity in the pressure vessel. If the pressure vessel contents purity is unacceptable, perform a product purge to reduce contaminants. The following procedure is recommended for the applications:

- 1. Attach the warm nitrogen, N2, product source to the LIQUID VALVE. Approximately 40 psig product delivery pressure should be achieved. *The positive pressure must always be maintained in the cylinder during purge procedure to prevent drawing atmospheric contaminants back into the cylinder.*
- 2. Closed all valves. Before venting to atmosphere ensure that such venting is allowed by all applicable site regulations and codes.
- 3. Open VENT VALVE and USE VALVE. Vent the inner vessel to 5 psig (34kPa) as indicated on the PRESSURE GAUGE. Close VENT VALVE and USE VALVE.
- 4. At this low pressure 5 psig (68kPa), loosen both the compression fitting connections on the DUAL PRESSURE BUILDING/ECONOMIZER REGULATOR so that N2 vented thru these connections. Then retighten the connections while the cylinder is still on positive pressure.
- 5. Repeat purge procedure 1 through 3 until an acceptable product purity is achieved.
- 6. After completion of cylinder purge, make sure that all valves are closed.

REGULATOR MAINTENANCE

A dual stage, spring loaded regulator is employed for the pressure building/economizer circuit. This regulator can be adjusted on the container, replaced, or checked and adjusted off the container in a readily fabricated bench adjustment fixture.

Regulator Adjustment- On container

- 4. Fill the container with appropriate liquid product.
- 5. Open the Pressure Building Valve and allow the container pressure to stabilize for about an hour. Note the point where the pressure stabilizes.
- 6. Adjust the screw on the top of the regulator to raise or lower the pressure to the desired point. When decreasing the setting, the pressure building valve must be closed and the container vented to a lower pressure. Then repeat step 2 in order to observe the change.

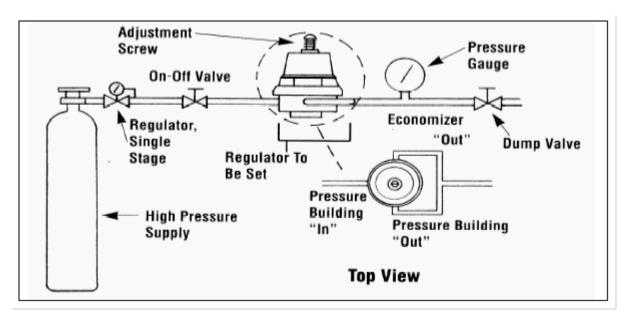
Note: One clockwise turn of the adjustment will raise the set point by approximately 30 psig (2 bar /207 kPa). See the chatr below to determine the range of adjustment for the regulator you are servicing. Do not attempt to set the regulator to a pressure outside of its design range.

REGULATOR ADJUSTMENT RANGES

Part No.	Normal Setting`	Range	Delta
	125 psig	50 to 175 psig	20 psig
6999-9015	8.6 bar	3.4 to 12 bar	1.4 bar
	862 kPa	345 to 1207 kPa	138 kPa

Regulator Removal or Replacement Procedure

- 9. Close manual Pressure Building valve.
- 10. Vent the container to atmospheric pressure.
- 11. Loosen and remove both the tube connections on the pressure building and economizer side of the regulator.
- 12. Remove the regulator from the container by unscrewing the valve body and elbow from the output of the pressure building valve.
- 13. Repair the regulator and readjust its setpoint using the bench test setup.
- 14. To install a replacement or readjusted regulator, apply Teflon tape to the elbow on the container and thread the valve body onto the elbow.
- 15. Reconnect the tube connections to the regulator and tighten.
- 16. Pressurize the container and check it for leaks.


Regulator Adjustment-Bench Procedure

Assemble the regulator adjustment fixture, and the regulator to be adjusted, as shown in the accompanying illustration.

- 9. Leak test joint between the high-pressure cylinder regulator and the dump valve. Joints must be leak free before proceeding.
- 10. Close the ON/OFF valve, and the dump valve.
- 11. Slightly open the high-pressure cylinder valve.
- 12. Set the high-pressure regulator above the desired set point for the Pressure Building setpoint.
- 13. Slowly open ON/OFF valve and observe the downstream pressure gauge.

- 14. When the regulator under test closes, the P.B. set point may be read on the downstream pressure gauge.
- 15. Close the ON/OFF valve and open the Dump valve.
- 16. To reset the regulator, loosen the locknut on the adjusting screw. Raise the set point by turning the adjusting screw clockwise; lower the set point by turning the screw counterclockwise. After adjustment, repeat step 5 and 6 to check the setting before reinstalling the regulstor on the liquid container.

Note: The regulator has directional gas flow. The arrow on the regulator body must point in direction indicated in the Bench Adjustment Fixture illustration. The economizer portion of the regulator has already opened approximately 20 psig (1.4 bar/ 138 kPa) below the pressure building setpoint.

Regulator Bench Adjustment Fixture

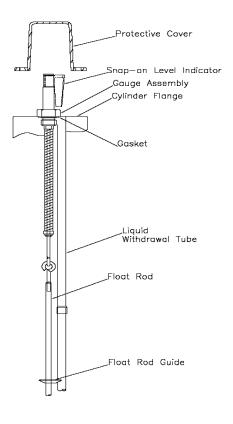
CHECKING CONTAINER PERFORMANCE

Cryogenic container are two containers, one within the other. The space between the container acts as highly efficient thermal barrier including high technology insulation, a vacuum, and a vacuum maintenence system. Each serves a very important part in the useful life of the container. The high technology is very effective in preventing radiated heat from entering the inner container. The vacuum prevents heats convection or conduction from reaching the inner container. Unfortunately, the perfect vacuum can not be achieved since trace gas molecules begin to enter the vacuum space from the moment of manufacture. The vacuum maintenance system consists of materials which gather trace gas molecules from the vacuum space. The maintenance system can perform its function for years, but it has a limited capacity. When the vacuum maintenance system is saturated it can no longer maintain the vacuum integrity of the container. The change will be very gradual and may go unnoticed for several years. When the vacuum in the insulation space is no longer effective, the folowing symptoms may appear:

- 6. With liquid in the container and pressure building/vaporizer coil not in use, the outer casing will be much colder than comparative container.
- 7. Frost, indicating the liquid level, may be visible on the outer casing of the container.
- 8. The container may appear to "sweat" if the air sorrounding the container is hot and humid.
- 9. The relief valve will open continuously until the container is empty.
- 10. The container will hold pressure for several days but will not hold liquid.

NER Testing

If a loss of vacuum integrity is suspected, the container's Normal Evaporation Rate (NER) should be checked. The test measures the actual product lost over times so you can compare the results obtained to the NER value in the SPECIFICATIONS table. A test period of 48 hours is recommended, after the container is allowed to stabilize, but the formula given produces a Daily NER over any time period.


- 5. Fill the container with 150 pounds (68 kg) of liquid nitrogen.
- 6. Close the LIQUID valve and the PRESSURE BUILDING valve, leave the VENT valve open and allow it to remain open during test.
- 7. Allow the container to stabilize for 24 hours, then reweigh it. Record the weight, time, and date.
- 8. Reweigh 48 hours later. The test is most effective if container is not moved during this period. Record the second test date, time, and weight.

The following calculation will provide the actual Normal Evaporation Rate in pounds-per-day. Daily normal evaporation is simply half the loss over 48 hours.

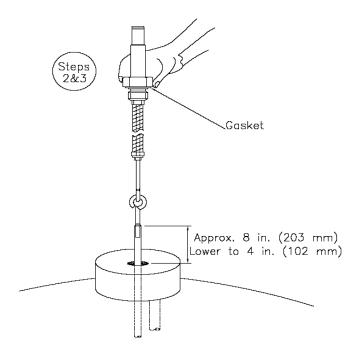
Compare the results of your test to the "as manufactured" NER value in the SPECIFICATIONS section of this manual. A Container in service should maintain an NER value of less than two times the new specification. Any test result greater than two times the listed value is indicative of a failed, or failing, vacuum. If NER is found to be high, contact Taylor-Wharton Customer Service.

FULL VIEW CONTENTS GAUGE MAINTENANCE

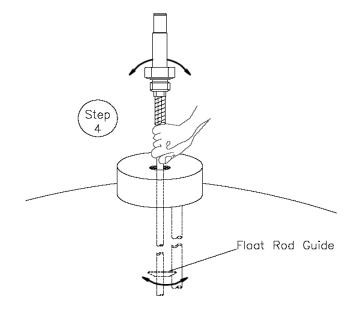
The content of these containers is measured with Full View Contents Gauge. The device consists of the gauge assembly beneath a clear plastic protective cover. When the gauge is assembled, a snap on level indicator is magnetically coupled to the top of a float rod and moves up and down with the changing level of the liquid in the container.

Removing the Full View Contents Gauge

- 5. Vent all pressure from container.
- 6. Remove the protective cover by removing three bolts from the base of the cover.
- 7. Unscrew the gauge body using a wrench on hex fitting at base of the indicator.
- 8. Lift the entire gauge assembly free of the container. The gauge assembly is long and may be very cold. Gloves should be used to protect your skin.


WARNING: Cold surfaces should never be handled with bare skin. Use gloves and other protective clothing when performaning this procedure.

Contents Gauge Installation


Before installing a new gauge or repaired, inspect the gasket seals. If any damage is apparent, replace the gasket.

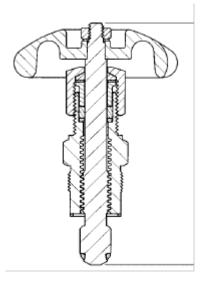
8. When inserting the gauge assembly, lower the float rod through the gauge opening until about 8 inches (203 mm) of the float rod remains above the container.

- 9. Grasp the clear cover portion of the gauge assembly with two fingers so that the assembly hangs free and "plumb."
- 10. Lower the assembly about 4 inches (102 mm) slowly and try to keep the rod in the center of the threaded entrance hole as you do. If you are careful during this portion of insertion, you will drop the float rod straight through the guide ring inside the cylinder.

11. To confirm that the rod is correctly positioned in the cylinder, stop where you can still grasp the top of the rod and try to swing the lower end from side to side.

- 12. When the rod is engaged in the guide ring, the rod will be restricted to lower end movement of about ½" inches (12.7 mm); if the you can feel greater movement, withdraw the rod to the point where its top is 8 inches (203 mm) above the gauge opening and try again.
- 13. When you are satisfied that the float rod is correctly installed, lower the assembly the rest of the way into the container until the top portion threads can be engaged.
- 14. Screw the gauge in place and hand torque to about 20 ft lbs (2.8 kgf m). Leak check the connection of gauge to the flange.

CAUTION:


When installing the gauge assembly, care must be taken to ensure that the float rod is inserted through "guide ring" located on the liquid withdrawal line inside the container. If the gauge does not engage this ring, the contents indication will be inaccurate, or the gauge may be damaged in use.

HAND VALVE REPAIR

Hand valves are an integral part of the container, and the valve bodies rarely need replacement. However, the handwheel and internal parts of the valves are renewable. The illustration below is a view of the valve replaceable part used on Taylor-Wharton liquid container.

Valve Repair Kit Assembly

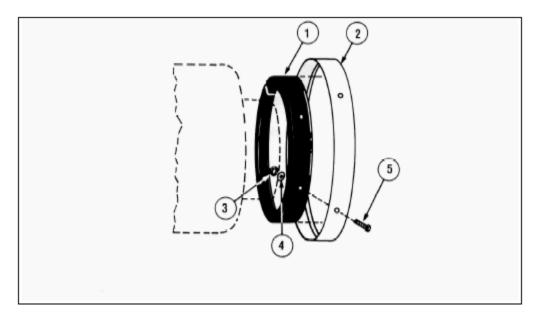
Fits: 3/8 in Rego Globe valve.

KIT PARTS- Kit P/N 1750-9C35

Valve Disassembly Instructions

- 4. Open valve by turning Handwheel couterclockwise as far as it will go to release any trapped gas in the system.
- 5. Using a large adjustable wrench to hold valve body, remove Bonnet by turning counterclockwise with a 15/16-inches socket wrench that capable of developing at least 80 ft lbs (22 kgf m) torque.
- 6. Remove the handwheel assembly from the valve body and discard. Inspect body and clean if necessary; be sure interior and seal areas are free from dirt, residue and foreign particles.

CAUTION: Do not apply force after valve is fully open. Do not scratch or mark internal surface of valve.


Valve Replacement Instructions

- 3. Thread Handwheel Assembly into valve body until properly seated.
- 4. Turn Handwheel completely clockwise to close valve. Re-pressurize container and leak check valve.

SHOCK MOUNT FOOT RING (XL-45/50/55)

Item No.	Description	Part No.	Qty.
1	Rubber Shock Ring	XL50-4C18	1
2	Foot Ring	XL50-4C19	1
3	Hex Nut	6310-0135	4
4	Washer	6430-0125	4
5	Carriage Bolt	6620-0401	4

Shock Mount Foot Ring- ExplodedView

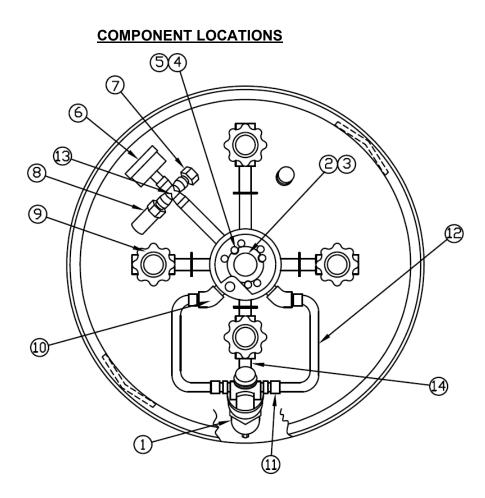
Replacement of Shock Mount Foot Ring

- 8. Empty or transfer all contents of tank. Vent to atmospheric pressure.
- 9. Gently lay the container on its side and unbolt the four (4) carriage bolts that attached the foot ring and rubber ring to the tank.
- 10. Slide off the damaged foot ring and rubber shock ring.
- 11. Assemble rubber shock ring into new foot ring and force over shock mount ring on container. Use a rubber hammer to drive the rubber shock ring into place.
- 12. Using a ½ inch drill bit, drill holes through rubber so that the carriage bolt slides in smoothly.
- 13. The holes in foot ring must be position in alignment with holes in shock mount ring. Using the 4 bolts, washers and nuts, fasten the new parts to the container.
- 14. After securing the shock mount ring, gently lift the container to the upright position and inspect your work.

Note: If the original Shock Mount Ring is badly damaged, we recommend that an NER test is performed to ensure that no internal damage has resulted from the impact of the shock mount ring.

TROUBLESHOOTING

The following chart is provided to give you some guidance in determining the probable cause and suggested corrective action for some problems that may occur with cryogenic liquid containers. This chart is scpecifically tailored to your XL-45, XL-50, XL-55, XL-60, XL-65 or XL-70.


Symptom	Possible Cause	Corrective Action
Consistently low operating pressure.	 Relief valve open at low pressure. Economizer side of P.B./Economizer Regulator stuck open. 	 Remove and replace relief valve. Remove and replace regulator
	5. Cold liquid.	5. Open pressure building valve. With P.B. inoperative, the container will build pressure over time, or an external pressure source can be used to pressurize container.
No pressure shown on container pressure gauge.	 7. Bad container pressure gauge. 8. Open inner container bursting disc. 	 Remove and replace bad gauge. Remove and replace bursting disc. Pressurize container and check relief valve operation.
	 9. Leaks in valves or plumbing. 4. Cold liquid. 	 Leak test and repair leaks. For valve repairs, see Maintenance section. Open pressure building
		circuit.
No pressure showing but container is full by weight.	 Broken pressure gauge. Vent valve open/P.B. valve closed. 	 Replace pressure gauge. Close vent valve, open P.B valve.
	6. Faulty relief valve.	6. Replace relief valve.
Container full by weight and Liquid Level Gauge but very	1. Liquid too cold.	 Open P.B. valve or allow to stand.
low pressure.	 Possible leak in vent valve. Faulty relief valve 	 Rebuild valve. Replace valve.
Container is cold and may have ice or frost on outer casing. Will not hold liquid overnight. Relief valve is venting gas.	 Vacuum loss. Check NER. Defective 	 Consult with Taylor- Wharton for course of action. Do not attempt to put additional liquid container. Look for P.B coil pattern in
	P.B./Economizer regulator.	ice. Close P.B. valve. Replace or reset regulator.
Ice formation on bottom of container when P.B. valve is	3. Pressure building valve not closing properly.	3. Replace or rebuild valve.

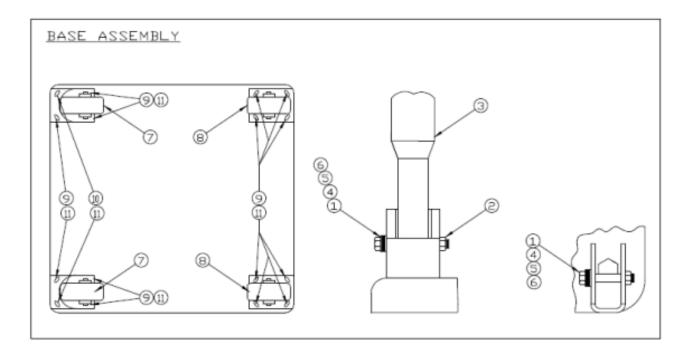
TROUBLESHOOTING CHART

closed.	 Leak in pressure building system topworks. 	4. Leak test piping connections and tighten fitting if needed.
Container vents through relief valve when in use.	Pressure Building/ Economizer Regulator set above relief valve setting. Economizer side of regulator clogged or stuck open.	Remove and reset or replace regulator.
Container vents after fill but quits after awhile.	This may be caused by residual heat vaporizing some liquid inside container and is a normal condition.	Symptom should go away once container reaches operating temperature and the liquid reaches its saturation point at container operating pressure.
Container vent gas continuously through relief valve.	Heat leak may be too great.	Perform container performance evaluation test per Maintenance section to determine if container vacuum is adequate.
Level indicator stuck ½ full. Yellow indicator ring will not move.	Float rod stuck on or in float rod guide.	Reinstall. See Contents Gauge Installation section.
Level indicator at bottom of gauge. Container full of product.	Indicator disengaged from gauge rod. Caused by dropping the container.	Recouple indicator using re- engagement ring.

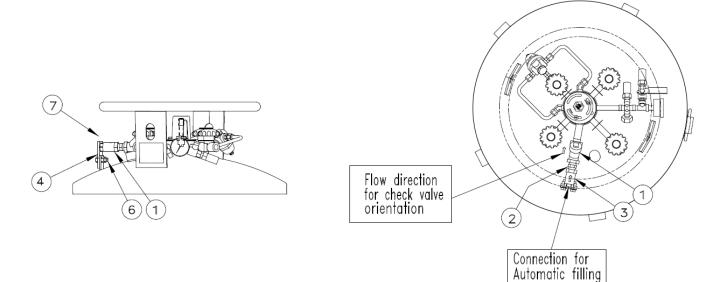
REPLACEMENT PARTS

This replacement parts list includes a recommended inventory quantity which allows you to order parts on timely basis to keep all your XL-45/50/55/60/65/70 containers in service. When placing orders, please use the nomenclature and part numbers in this section.

Index No.	Descriptions	Part No.	Recommended for 10 Units
1	Dual Regulator, pressure Building/Economizer 125 psig (8.6 bar/862 kPa)	6999-9015	2 Each
2	*Gasket, Glass Filled Teflon, Contents Gauge	7701-0083	5 Each
3	Liquid Level Indicator Inert Spring Float Rod (GL45) Float Rod (GL50/55) Float Rod (GL60/65) Float Rod (GL70) Nitrogen, indicator Scale Argon, indicator Scale Oxygen, indicator Scale	GL45-9C65 GL45-9C96 GL50-9C97 GL50-9C94 GL45-9C95 GL45-9C75 GL45-9C76 GL45-9C77	1 Each 1 Each 1 Each 1 Each 1 Each 4 Each 4 Each 4 Each
4	Screw, brass, 1/4inch-20 UNC x 5/8 inch	6114-1087	10 Each


5	Washer, Lock, ¼ inch, stainless steel	6460-2025	10 Each
6	Gauge, Pressure 0-400 psig (0-28 bar/0- 2758 kPa)	1700-9C10	2 Each
7	Safety Head, 380 psig (26 bar/2620 kPa)	1190-9C21	2 Each
8	Relief valve, 230 psig (16 bar/1586 kPa)	1700-9C39 (Rego)	5 Each
	**22 psig (1.5 bar/152 kPa)	6913-9070 (Generant) 1700-9069 (Rego) 6913-9069 (Generant)	5 Each
9	Valve Repair Kit	1750-9C35	3 Each
10	Elbow, Male, Brass, 45 ^o , 3/8in. ODT-comp x ¹ ⁄ ₄ in.	6814-9233	2 Each
11	Connector, Male, Brass, 3/8 in. ODT-comp x 1/4in. NPT-EXT	4570-1960	2 Each
12	Tube, P.B./Economizer Line	GL45-9C20	2 Each
13	Cross Assembly	GL55-9C29	2 Each
14	Elbow, Male, 45°, 3/8 in. NPT x ¼ in. NPT	6814-9241	2 Each
15	USE (CGA 540)-oxygen	7114-0613	5 Each
	USE (CGA 580)-argon/nitrogen	7114-0614	5 Each
	LIQUID (CGA 440)- oxygen	6514-8992	5 Each
	LIQUID (CGA 295)-argon/nitrogen	7355-4712	5 Each
	VENT (CGA 440)-oxygen	6514-8892	5 Each
	VENT (CGA 295)-argon/nitrogen	7355-4712	5 Each
	*Decal, Warning	1700-9C07	4 Each
	*Decal, Nitrogen service	GL55-9C51	A/R
	*Decal, Oxygen service	GL55-9C52	A/R
	*Decal, Argon service	GL55-9C53	A/R
*Not illus	tratad	ł	

*Not illustrated **Optional/Not illustrated


ltem No.	Description	Part No.	Recommended for 10 units
1	Cap screw, Hex Head, ½"-13UNC, S.S.	6164-1753	10 each
2	Hex Nut, Nylon Insert	6331-1183	10 each
3	Handle	XL65-9C31	1 each
4	Flat Washer, S.S.	6460-9024	10 each
5	Spring Washer, S.S.	6460-9025	10 each
6	Flat Washer, Teflon	6160-9026	10 each
7	Caster, Swivel with brake, 4 in. Dia. Wheel	7300-9021	5 each
	*Caster, Swivel 4 in. Dia. Wheel	7300-9023	5 each
8	Caster, Rigid 4 in. Dia. Wheel	7300-9022	5 each
9	Carriage Bolt,3/8"-16UNC, 1 ¼" L, S.S.	6160-4766	10 each
	*Carriage Bolt, M8 X 25mm L, S.S.	6160-4763	20 each
10	Hex Head Cap screw,3/8"-16UNC, 1" L, S.S	6164-1133	10 each
11	Elastic Stop Nut, S.S.	6368-9110	10 each
	*Nylock Elastic Stop Nut, M8, S.S.	6311-1044	20 each

COMPONENT FOR SQUARE BASED ASSEMBLY CONTAINER

*Applicable for 5-caster round base model only

ADDITIONAL COMPONENT FOR EXPRESS-FILL VERSION

REPLACEMENT PARTS

Number	Description	Part Number				
1	Check Valve, 1/2 NPT	6913-9365				
2	Hex Nipple, 1/2 NPT	6719-9995				
3	Check Valve, In-Line, 1/2 NPT	6913-9370				
4	Check Valve Bracket	EZ65-9C92				
5	Capscrew	6164-1133				
6	Nuts	6310-0135				
	CGA Connections					
7	Oxygen	6514 - 8990				
7	7 Nitrogen 7355 – 4698					
7	7 Argon 7355 – 4698					

THE EXPRESS-FILL VERSION NOTE

Please refer to those operating instructions for General Information and data related to Safety, Operation, Maintenance, Specifications, Troubleshooting, and Replacement Parts.

These cylinders are designed to be filled automatically using the Express Cryogenic Delivery System or by conventional means. Automatic filling eliminates product loses due to venting. The

Express cylinders are designed to automatically stop the fill process when the liquid level in the cylinder reaches a set level. Refer to Express Truck manual (section 5.6) for automatic filling instruction. The automatic fill shut-off will operate only when filled by the Express Cryogenic

Delivery System. The automatic fill shut-off will not function during conventional filling. When filling cylinder for transportation, maximum liquid weight should not be exceeded regardless of fill method. See "Filling the Container" for details. Before connecting the Express System-fill hose to the cylinder, visually check the CGA connection for cleanliness, and obstructions.

ACCESSORIES

Accessories available for use with Taylor-Wharton XL-Series containers are:

-Manifold, Automatic and Manual

-Container Hand Trucks

-Vaporizer adding up to 250 cfh (6.6 cu.m/h) each

• PN: VP50-7C10

-Gas Service Changeover Kits

• PN: GL50-8C35	CGA 440	LIQUID / VENT	O2 Service
• FN. GL50-6C35	CGA 540	USE	O2 Service
 PN: GL50-8C30 	CGA 295	LIQUID / VENT	N2 Service
• FN. GL50-8C30	CGA 580	USE	N2 Service
• PN: GL50-8C31	CGA 295	LIQIUD / VENT	AR Service
• FN. GL50-6C31	CGA 580	USE	AR Service
 PN: HP50-8C30 	CGA 320	LIQUID / USE	CO2 Service
• PN: HP50-8C30	CGA 295	VENT	CO2 Service
 PN: HP50-8C35 	CGA 326	LIQUID / USE	N2O Service
• PN. HP50-8C35	CGA 295	VENT	N2O Service

-Transfer Hoses (O₂, N₂, and AR)

	(-2, -2,	,		
•	PN: 1700-9C65	4 ft X CGA 295 X 3/8" NPT	LIQUID / VENT	N2/AR/CO2 Service
•	PN: 1600-9C66	6 ft X CGA 295 X 3/8" NPT	LIQUID / VENT	N2/AR/CO2 Service
•	PN: GL50-8C51	6 ft X CGA 580 X 3/8" NPT	USE	N2/AR Service
•	PN: GL50-8C53	6 ft X CGA 440 X 3/8" NPT	LIQUID / VENT	O2 Service
•	PN: GL50-8C56	6 ft X CGA 440 X 3/8" NPT	USE	O2 Service
•	PN: HP50-8C51	6 ft X CGA 320 X 3/8" NPT	LIQUID / USE	CO2 Service

-Cryogenic Phase Separators

- PN: 1193-8C80 2 ³/₄" X 1 3/8" OD (3/8" NPT)
- PN: 1193-8C82 1 ¹/₄" X 1" OD (3/8" NPT)
- PN: 1193-8C83 1 ¼" X 1/2" OD (1/8" NPT)

-Fill Tee Assemblies

• PN: GL50-8C60

For additional information concerning the accessory of your choice, please consult the separate manuals on accessories or call Taylor-Wharton.

QUALITY WARRANTY CERTIFICATES TAYLOR-WHARTON XL SERIES LIQUID CYLINDERS

Taylor-Wharton warrants to the original purchaser that the internal structural support system of each XL Series Liquid Cylinder shall be free of defects in materials and workmanship for the life of the product if it is used and maintained according to Taylor-Wharton's published instructions. Taylor-Wharton warrants to the original purchaser of the following:

- 3. Vacuum Deterioration: The Vacuum system employed on each XL Series Liquid Cylinders is warranted to maintain thermal performance or Net Evaporation Rate (NER) within 10% of Taylor-Wharton's published specifications for a period of five years from date of shipment to the initial purchaser if the product is used and maintained according to Taylor-Wharton's published instructions.
- 4. Plumbing and control Valves: All components supplied by Taylor-Wharton and used on this product are warranted to be free from defects in materials and workmanship, in the normal service for which the product was manufactured, for a period of one year from the date of shipment to the original purchaser.

To validate the warranty, the purchaser must abide to the following: 1) Immediate discontinue use of the product to further investigation. 2) Purchaser to confirm that defect is due to either of the above by written notice to Taylor-Wharton within 48 hours after confirmation of a claimed defect. Upon receiving official notice, Taylor-Wharton will act as follows: 1) Were the defect is due to vacuum deterioration, Taylor-Wharton will ask the purchaser to return such product freight prepaid to Taylor-Wharton for further evaluation to validate to warranty claim. If the claimed defect is confirmed by Taylor-Wharton's inspection will submit a report to customer, at its option and as the purchaser's sole remedy, repair or replace such product or any component part thereof or refund the original purchase price. If no defect is found or after correction of a confirmed defect, Taylor-Wharton will return the equipment at purchaser's expense. 2) If the defective is due to plumbing and control valves, Taylor-Wharton will require sending replacement parts to the purchaser for reinstallation by purchaser.

This warranty is voided by alterations or by repairs of others. Taylor-Wharton shall not be liable under this warranty, or otherwise, for defects caused by negligence, abuse or misuse of the product, corrosion, fire, heat, or the effects of normal wear. Any related components or other equipment manufactured by others which may be sold with Taylor-Wharton's products are not covered by this warranty.

THIS WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES SET FORTH HEREIN ARE EXCLUSIVE. TAYLOR-WHARTON SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES RESULTING FROM THE DELIVERY, USE OR FAILURE OF THE PRODUCT (INCLUDING LOSS OF ANY MATERIAL STORED IN THE PRODUCT), OR FROM ANY OTHER CAUSE WHATSOEVER BY ACCEPTING DELIVERY OF THE PRODUCT SOLD HEREUNDER, THE PURCHASER ACKNOWLEDGES THAT THIS LIMITATION OF REMEDIES IS REASONSABLE AND ENFORCEABLE. IN NO EVENT SHALL TAYLORWHARTON'S LIABILITY EXCEED THE PURCHASE PRICE FOR THE PRODUCT.

Taylor-Wharton Malaysia Sdn Bhd (776817-V) Lot PT 5073, 5076 & 5077, Jalan Jangur 28/43, Hicom Industrial Estate, Section 28, 40400 Shah Alam, Malaysia www.twcryo.com

Instruction Manual

XL-45HP, XL-50HP, XL-55HP, XL-60HP, XL-65HP, XL-70HP, XL-50VHP, XL-55VHP and XL-70VHP

Do not attempt to use or maintain these units until you read and understand these instructions. Refer to the Taylor-Wharton's <u>Safety First</u> booklet (TW-202) for handling cryogenic material. Do not permit untrained persons to use or maintain this equipment. If you do not understand these instructions, contact your supplier for additional information.

Manual HP/VHP-SERIES Rev.3 T-W P/N# 7950-8093 January 29, 2021

TABLE OF CONTENTS

XL-45HP/50HP/55HP/60HP/65HP/70HP/50VHP/55VHP/70VHP	1
CONTAINER SAFETY	2
GENERAL INFORMATION	3
SPECIFICATIONS	4
OPERATION	6
COMPONENT DESCRIPTION	6
WITHDRAWING GAS FROM THE CONTAINER	10
WITHDRAWING LIQUID FROM THE CONTAINER	11
FILLING THE CONTAINER	11
MAINTENANCE PROCEDURE	15
CONVERTING A CONTAINER TO DIFFERENT GAS SERVICE	16
PURGE PROCEDURE	17
REGULATOR MAINTENANCE	17
CHECKING CONTAINER PERFORMANCE	19
FULL VIEW CONTENTS GAUGE MAINTENANCE	20
HAND VALVE REPAIR	22
SHOCK MOUNT FOOTRING	23
TROUBLESHOOTING	25
REPLACEMENT PARTS	27
COMPONENT FOR SQUARE BASED ASSEMBLY CONTAINER	29
ADDITIONAL COMPONENT FOR EXPRESS-FILL VERSION	30
THE EXPRESS-FILL VERSION NOTE	30
ACCESSORIES	31
QUALITY WARRANTY CERTIFICATES	32

CONTAINER SAFETY

WARNING

Following safety precautions are for your protection. Before performing installation, operating, or maintenance procedures read and follow all safety precautions in this section and in reference publications. Failure to observe all safety precautions can result in property damage, personal injury, or possible death. It is the responsibility of the purchaser of this equipment to adequately warn the user of the precautions and safe practices for the use of this equipment and the cryogenic fluid stored in it.

Pressure Hazard

The containers covered by this literature may contain pressure up to 500 psig (34 bar/3447 kPa.) Sudden release of this pressure may cause personal injury by issuing cold gas or liquid, or by expelling parts during servicing. Do not attempt any repaire on these containers until all pressure is released, and the contents have been allowed to vaporize to ensure no pressure buil-up can occur. Before performing installation, operation, or maintenance procedures, read and follow all safety precautions in this section and in reference publications. Failure to observe all safety precautions can result in property damage, personal injury, or possible death. It is the responsibility of the purchaser of this equipment to adequately warn the user of the precautions and safe practices for use of this equipment and cryogenic fluid being used.

Extreme Cold - Cover Eyes and Exposed Skin

Accidental contact of liquid methane or cold issuing gas with the skin or eyes may cause a freezing injury similar to frostbite. Handle the liquid so that it won't splash or spill. Protect your eyes and cover the skin where the possibility of contact with the liquid, cold pipes and cold equipment, or the cold gas exists. Safety goggles or a face shield should be worn if liquid ejection or splashing may occur or cold gas may issue forcefully from equipment. Clean, insulated gloves that can be easily removed and long sleeves are recommended for arm protection. Cuffless trousers should be worn outside boots or over the shoes to shed spilled liquid. Cryogenic liquids are extremely cold and will be at temperature below -300°F (-184°C) under normal atmospheric pressure.

Keep Equipment Area Well Ventilated

Although some of the gases used in these containers are non-toxic and non-flamable, they can cause asphyxiation in a confined area without adequate ventilation. Any atmosphere which does not contain enough oxygen for breathing can cause dizziness, unconsciousness or even death. These gases cannot be detected by the human senses and will be inhaled normally as if it were air. Ensure there is adequate ventilation where these gases are used and store liquid containers only in a well-ventilated area.

Replacement Parts Must be "Cleaned for Oxygen Service"- Some materials, especially nonmetallic gaskets and seals, can be a combustion hazard if used in oxygen or nitrous oxide service, although they may be acceptable for use with other cryogenic liquids. Use only Taylor-Wharton recommended spare parts, and be certain parts used on oxygen or nitrous oxide equipment are marked "clean for oxygen service." For information on cleaning, consult the Compressed Gas Association (CGA) pamphlet G-4.1, "Cleaning for Oxygen Service" or equivalent industrial cleaning specifications.

CAUTION: When installing field fabricated piping, make certain a suitable safety valve is installed in each section of piping between shut-off valves. Trapped liquefied gas will expand as it warms and may burst hoses or piping causing damage or personal injury.

For more detailed information concerning safety precautions and safe practices to be observed when handling cryogenic liquids consult CGA pamphlet P-12 'Handling Cryogenic Liquids' available from the Compressed Gas Association, 4221 Walney Road, 5th Floor, Chantilly VA 20151-2923, phone: 703-788-2700, fax: 703-961-1831

GENERAL INFORMATION

The XL-45HP, XL-50HP, XL-55HP, XL-60HP, XL-65HP, XL70HP, XL-50VHP, XL-55VHP and XL-70VHP are vacuum-insulated, stainless steel containers design to store and transport cryogenic liquid oxygen, nitrogen, argon, carbon dioxide, and nitrous oxide with continuous flow rates up to 150 ft³/h (3.9 m³/h) in carbon dioxide service up to 110 ft³/h (2.9 m³/h) in nitrous oxide service; up to 350 ft³/h (9.2 m³/h) in other gas service. The container is designed and constructed according to DOT 4L standards and may be used for over the road transportation as well as on-site storage and supply in wide range of applications. The XL-45HP/50HP/55HP/60HP/65HP/70HP are designed to hold liquid with a relief valve setting of 350 psig (24 bar/2413 kPa) and the XL-50VHP/55VHP/XL-70VHP with relief valve setting of 500 psig (34 bar/3447 kPa), which provides greater holding times than lower pressure cryogenic containers.

Handling the Container

The XL Series containers are very rugged liquid cylinders. All Cryogenic liquid containers have an inner container and an outer container with an insulated vacuum space between them. Any abuse (dents, dropping, tip-over, etc.) can affect the integrity of the container's insulation system.

Please refer specification table with regard to weight for each model respectively and you should treat the load accordingly. The attachment points provided on the XL-45HP/50HP/55HP/50VHP/55VHP will allow you to use a hand truck or a hoist to handle these loads properly. XL-60HP, XL-65HP, XL-70HP and XL-70VHP will allow you to use caster wheel for movement. Do not attempt to move these cylinders by any other means. While moving the cylinder, the following precautions should be observed:

- vii. Never lay the container on its side. Always ships, operates, and store the unit in a vertical or upright position.
- viii. When loading or unloading the container from a truck, use a hand truck, lift gate, crane or parallel loading dock. Never attempt to manually lift the unit.
- ix. To move the container over rough surfaces, or lift the container, attach an appropriate sling to the lifting points cut into the welded support post, and use a portable lifting device that will handle the weight of the container and its contents.

Freight Damage Precautions: Any freight damage claims are vour responsibility. Cryogenic liquid containers are delivered to from vour carrier Taylor-Wharton's dock in new condition. When you receive our product, you may expect it to be in the same condition. For vour own protection, take time to visually inspect each shipment in the presence of the carrier's agent before you accept delivery. If any damage is observed, make an appropriate notation on the freight bill. Then, ask the driver to sign the notation before you receive the equipment. You should decline to accept containers that show damage which may affect serviceability.

SPECIFICATIONS

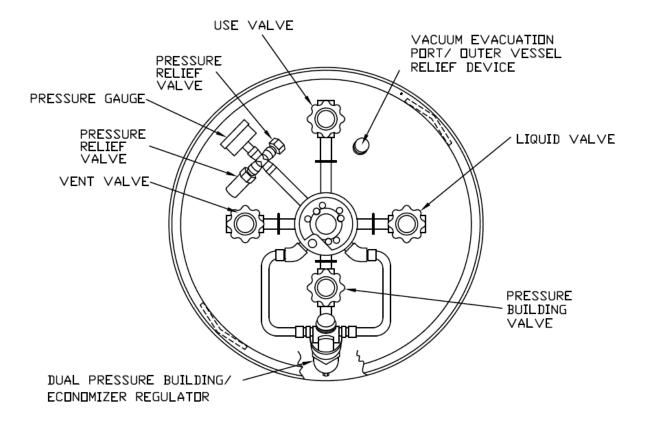
	XL-45HP	XL-50HP	XL-55HP	XL-50VHP	XL-55VHP
Dimensions					
Diameter, in (mm)	20 (508)	20 (508)	20 (508)	20 (508)	20 (508)
Height, in (mm)	60.0 (1525)	62.4 (1585)	65.0 (1650)	62.4 (1585)	65 (1650)
Weight Empty (Nominal),					
lb (kg)	275 (125)	291 (132)	300 (136)	302 (137)	317 (144)
Capacity, Gross, Liters	176	188	208	188	201
Capacity, Useable Liquid, Liters	165	176	198	176	190
Weight of Contents Maximum lb.(kg)					
Base on DOT Rated Service Pressure					
Carbon Dioxide	387 (176)	414 (188)	458 (208)	381 (173)	411 (187)
Oxygen	360 (163)	385 (175)	426 (193)	364 (165)	393 (178)
Nitrogen	252 (114)	269 (122)	298 (135)	240 (109)	259 (118)
Argon	438 (199)	467 (212)	518 (235)	443 (201)	478 (217)
Nitrous Oxide	368 (167)	393 (178)	435 (197)	N/A	N/A
Normal Evaporation Rate*					
(% Capacity per Day)			0.750/	0.00/	0.00/
Carbon Dioxide	0.75%	0.75%	0.75%	0.8%	0.8%
Oxygen / Argon	1.4%	1.2%	1.2%	1.5%	1.5%
Nitrogen Nitrous Oxide	2.2% 0.75%	2.0% 0.75%	1.9% 0.75%	2.2% N/A	2.2% N/A
Gas Flow Rate @ NTP (STP),**	0.75%	0.75%	0.75%	IN/A	IN/A
cfh (cu. m/h)					
Carbon Dioxide	150 (3.9)	150 (3.9)	150 (3.9)	150 (3.9)	150 (3.9)
Oxygen, Nitrogen, Argon	350 (9.2)	350(9.2)	350 (9.2)	350(9.2)	350(9.2)
Nitrous Oxide	110 (9.2)	110 (9.2)	110 (9.2)	N/A	N/A
Relief Valve Setting, psig (bar/kPa)	350	350	350	500	500
	(24 / 2413)	(24 / 2413)	(24 / 2413)	(34 / 3447)	(34 / 3447)
Inner Container Bursting Disc,					
Psig (bar / kPa)	525	525	525	750	750
	(36 / 3620)	(36 / 3620)	(36 / 3620)	(52 / 5171)	(52 / 5171)
Dual Pressure Building/	, , , , , , , , , , , , , , , , , , ,				, , , , , , , , , , , , , , , , , , , ,
Economizer Regulator***					
Psig (bar / kPa)	300	300	300	400	400
Pressure Building Setting,	(20.7 / 2068)	(20.7 / 2068)	(20.7 / 2068)	(28 / 2578)	(28 / 2578)
Economizer Setting	320	320	320	420	420
	(22 / 2206)	(22 / 2206)	(22 / 2206)	(29 / 2896)	(29 / 2896)
Design Specifications					
TC / DOT	4LM / 4L	4LM / 4L	4LM / 4L	4LM / 4L	4LM / 4L
Gaseous Capacity					
Based on DOT Rated Service Pressure @ NTP, ft ³ . (STP, m ³)					
Carbon Dioxide	3383 (89)	3619 (95)	4003 (108)	3330 (88)	3560 (94)
Oxygen	4350 (114)	4651 (122)	5146 (135)	4397 (116)	4701 (124)
Nitrogen	3478 (91)	3712 (98)	4112 (108)	3312 (87)	3541 (93)
Argon	4236 (111)	4516 (119)	5012 (132)	4285 (113)	4582 (121)
Nitrous Oxide	3211 (84)	3429 (90)	3796 (106)	N/A	N/A

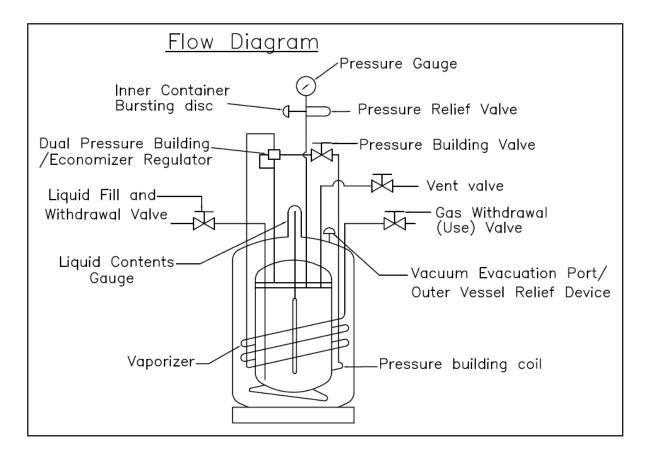
Specifications are subject to change without notice.

*Vent N.E.R. based on Useable Liquid Capacity.

**Container pressure at or above factory Dual Pressure Building/Economizer Regulator setting.

***Regulator has a pressure delta of 20 psig (1.4bar/138kPa)


SPECIFICATIONS (continue)


	XL-60HP	XL-65HP	XL-70HP	XL-70VHP
	(TMXL-230HP)			-
Dimensions				
Diameter, in (mm)	26 (660)	26 (660)	26 (660)	26 (660)
Height, in (mm)				
RND BASE	56.10 (1425)	57.5 (1460)	61.5 (1562)	62.0 (1575)
SQ. BASE	61.50 (1563)	58.0 (1473)	62.0 (1575)	62.5 (1588)
Weight Empty (Nominal), lb (kg)				
RND BASE	376 (171)	385 (175)	416 (189)	507 (230)
SQ. BASE	440 (200)	418 (190)	449 (204)	577 (263)
Capacity, Gross, Liters	240	247	280	280
Capacity, Useable Liquid, Liters	230	240	265	265
Weight of Contents Maximum lb.(kg)				
Base on DOT Rated Service Pressure				
Carbon Dioxide	528 (240)	545 (247)	617 (280)	566 (257)
Oxygen	491 (223)	505 (229)	572 (259)	542 (246)
Nitrogen	343 (156)	353 (160)	400 (181)	357 (162)
Argon	596 (271)	614 (279)	695 (315)	658 (299)
Nitrous Oxide	502 (228)	518 (235)	586 (266)	N/A
Normal Evaporation Rate*				
(% Capacity per Day)				
Carbon Dioxide	0.75%	0.75%	0.75%	0.80%
Oxygen / Argon	1.0%	1.0%	1.0%	1.3%
Nitrogen	1.6%	1.6%	1.6%	1.8%
Nitrous Oxide	0.75%	0.75%	0.75%	N/A
Gas Flow Rate @ NTP (STP)**				
cfh (cu. m/h)				
Carbon Dioxide	150 (3.9)	150 (3.9)	150 (3.9)	150 (3.9)
Oxygen, Nitrogen, Argon	350 (9.2)	350(9.2)	350 (9.2)	350 (9.2)
Nitrous Oxide	110 (9.2)	110 (9.2)	110 (9.2)	110 (9.2)
Relief Valve Setting, psig (bar/kPa)	350 (24 / 2413)	350 (24 / 2413)	350 (24 / 2413)	500 (34 / 3447)
Inner Container Bursting Disc,				
Psig (bar / kPa)	525 (36 / 3620)	525 (36 / 3620)	525 (36 / 3620)	750 (52 / 5171)
Dual Pressure Building/				
Economizer Regulator***				
Psig (bar / kPa)	300	300	300	400
Pressure Building Setting,	(20.7 / 2068)	(20.7 / 2068)	(20.7 / 2068)	(28 / 2578)
Economizer Setting	320 (22 / 2206)	320 (22 / 2206)	320 (22 / 2206)	420 (24 / 2896)
Design Specifications				
TC / DOT	4LM / 4L	4LM / 4L	4LM / 4L	4LM / 4L
Gaseous Capacity				
Based on DOT Rated Service Pressure				
@ NTP, ft ³ . (STP, m ³)				
Carbon Dioxide	4616 (122)	4511 (119)	5376 (152)	4947 (130)
Oxygen	5931 (156)	6100 (160)	6910 (196)	6541 (172)
Nitrogen	4733 (125)	4871 (128)	5520 (156)	4925 (129)
Argon	5767 (152)	5938 (156)	6725 (190)	6370 (167)
Nitrous Oxide	4380 (115)	5419 (142)	5096 (144)	N/A

OPERATION

The XL-45HP will store up to 165 liters of product; the XL-50HP up to 176 litres, 198 litres for XL-55HP, 230 litres for XL-60HP, 240 litres for XL-65HP,176 litres for XL-50VHP,190 litres for XL-55VHP and 265 litres for XL-70HP/VHP. All these cylinders can deliver either liquid or gas. The following component and circuit descriptions are pertinent to the operation of all the containers and should be read before attempting operation. Components may be identified on the Component Location illustration.

COMPONENT DESCRIPTIONS

Internal Vaporizer

A liquid container for gas service must have an internal heat exchanger that functions as a gas vaporizer coil to convert liquid product to gas continuously during withdrawal. The cylinder utilizes an internal heat exchanger that is inside the vacuum space attached to the container's outer casing. It provides a means of intruducing heat from outside container's insulated jacket, to vaporize liquid as gaseous product is withdrawn. The capacity of this circuit is sufficient to vaporize product flow rates up to 350 ft³/h @ NTP (9.2 m³/h @STP). If graeter continuous demand is put on the vaporizer, an external vaporizer should be added to properly warm the gas and avoid malfunction, or damage, to gas regulator, hoses, and other downstream components.

Pressure Building

A Pressure Building circuit is used to ensure sufficient driving pressure during high withdrawal periods. This fuction is actuated by opening a hand valve that create a path from the liquid in the bottom of the container, through the Preeure Building Regulator, to the gas space in the top. When the pressure building valve is open, and the container pressure is below the pressure building regulatoe setting, liquid taken from the inner container is vaporized in the heat exchanger which is inside the outer casing. The expanding gas is fed into the upper section of the container to build pressure. The resulting pressure will drive either the liquid or gas delivery system.

Pressure Building is not normally required unless container pressure drops below the gas output pressure desired. If, for example, the container pressure gauge reads 250 psig (17.2 bar/1724kPa), and your gas pressure requirement is 270 psig (19 bar/1860 kPa), the pressure building valve may be opened to build container pressure to 300 psig (20.7 bar/2068 kPa).

Economizer

An economizer circuit withdraws gas preferentially from the head space over the liquid in the container-gas that otherwise lost to venting. Excess pressure in the head space of the container is relief by allowing gas to flow from this area direct to the USE valve outlet while gas is withdrawn

from the container; yet normal operating pressure is preserved to ensure uninterrupted product delivery. The economizer is automatic and requires no operator attention.

Note: The economizer and pressure building fuctions are controlled by a single dual action regulator. The pressure delta between the pressure building setpoint and the economizer setpoint is approximately 20 psig (1.4 bar/138 kPa). This delta cannot be altered.

Warning: Never use the Dual Pressure Building/Economizer Regulator or Relief Valve for the XL-50/55/70VHP on any other container.

·

The USE Valve

This valve controls the gas outlet that allows product withdrawal through the internal vaporizer. It has the required CGA connection that matches the gas service for which the container is configured.

The LIQUID Valve

Liquid product is added or withdrawn from the container through the connection controlled by this valve. It has the CGA fitting that is reqired for liquid line connections. The valve is opened for fill or liquid withdrawal after connecting a transfer hose with compatible fittings to the LIQUID line connection.

The PRESSURE BUILDING Valve

This valve isolates the liquid in the bottom of the container to the Dual Pressure Building/Economizer Regulator. This valve must be open to build pressure inside the container.

The VENT Valve

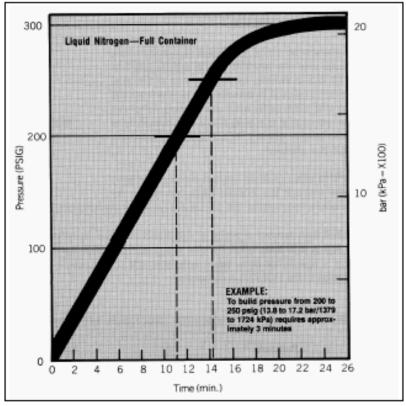
This valve controls a line into the head space of the container. It is used during the fill process. The VENT valve acts as fill point during the pump transfer, or to vent the head space area while liquid is filling the inner container during a pressure transfer fill through the LIQUID valve.

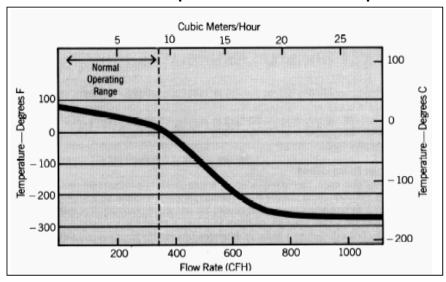
The Pressure Gauge

The pressure gauge displays the internal container pressure in pound-per-square-inch or in kilo-Pascal.

The Full View Contents Gauge

The container contents gauge is a float type lequid level sensor that indicates container liquid content through a magnatic coupling to a yellow indicator band. This gauge is an indication of approximate container contents only and should not be used for filling; liquid cylinder should be filled by weight.


Relief Devices


These cylinders have a gas service relief valve and inner container bursting disc with setting of 350 psig (24 bar/2413 kPa) and 525 psig (36 bar/3620 kPa) respectively for the HP-Serie; and 500 psig (34 bar/3447 kPa) and 750 psig (52 bar/5171 kPa) for the VHP-Serie respectively. Relief valves of 230 psig (16 bar/1568 kPa) is available if medium pressure operation is desired. A 22 psig (1.5 bar/152 kPa) relief valve is available for liquid delivery applications. Alternate dual pressure building/economizer regulator setting are required if medium-pressure relief valves are installed.

RELIEF VALVES AND RECOMMENDED REGULATOR SETTING

Relief Valve	Pressure Building	Economizer Setting	Normal Operating
Setting	Setting		Range
22 psig	N/A	N/A	0-22 psig
1.5 bar	N/A	N/A	0-1.5 bar
152 kPa	N/A	N/A	0-152 kPa
230 psig	125 psig	145 psig	75-175 psig
16 bar	8.6 bar	10 bar	5-12 bar
1586 kPa	862 kPa	1000 kPa	517-1207 kPa
350 psig	300 psig	320 psig	200-350 psig
24 bar	20.7 bar	22 bar	13.8-24 bar
2413 kPa	2068 kPa	2206 kPa	1379-2413 kPa
500 psig	400 psig	420 psig	300-600 psig
34 bar	28 bar	29 bar	20.7-41 bar
3447 kPa	2758 kPa	2896 kPa	2068-4137kPa

Vaporizer Performance Graph

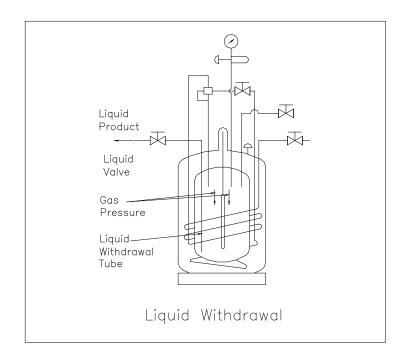
WITHDRAWAL GAS FROM THE CONTAINER

To withdraw gas from XL-45HP/50HP/55HP/60HP/65HP/70HP/50VHP/55VHP/70VHP, connect a suitable pressure regulator to the USE connection, and the output of the regulator to your external equipment. Then open the USE and the PRESSURE BUILDING valves. When the container pressure reaches 300 psig (20.7 bar/2068 kPa) or 400 psig (28 bar/2758 kPa) if equipped with the higher valve Dual Pressure Building/Economizer regulator- set the pressure regulator for the desired delivery pressure.

Increasing Gas Supply Capacity –Two or more liquid containers may be manifolded together. Accessory manifolds are available for use in creating a higher capacity gas supply system. The XL-45HP/50HP/55HP/60HP/65HP/70HP/50VHP/55VHP/70VHP can supply gas at flowrates up to 350 ft³/h @ NTP (9.2 m³/h @STP) using only its internal vaporizer. At low flowrates, the gas supplied will be at nearly ambient temperature. As the demand is increased, the gas will become proportionately colder. If greater vaporizing capacity is required, an accessory external vaporizer is available. When an external vaporizer is used, it must be connected to the USE valve and the regulator moved to the output of the external vaporizer.

CAUTION: When withdrawing gas from the cylinder, the capacity of the internal vaporizer can be exceeded. If gas is withdrawn at rates greater than the vaporizer capacity, liquid or very cold gas will be discharged. Severe damage to external equipment could result from the extreme cold.

CAUTION: Internal orifices in pressure regulators used with CO2 are subject to the formation of dry ice if excessively cold gas or high flow rates are used. If this condition occurs, an external vaporizer should be used to ensure the gas is warmed before it reaches the regulator.


WITHDRAWAL LIQUID FROM THE CONTAINER

When a container is used to supply liquid product, such as in an application as portable distribution container for carbon dioxide, liquid may be withdrawn from these cylinders.

Attach a transfer hose to the LIQUID connection and open the adjacent LIQUID valve. The pressure in the container will drive liquid product out the valve as long as the container pressure exceeds that of the receiver.

The rate of liquid withdrawal from these containers is variable depending on the gas phase pressure and the saturation of the liquid.

CAUTION: To avoid contamination, close the LIQUID valve on an empty container before disconnecting the transfer line.

FILLING THE CONTAINER

Cryogenic liquid containers must always be filled by weight to ensure there is enough gas head space (ulage) for liquid to expand as it warms. Using the procedure below, first determine the proper filled weight of each container. The weight derived is then used in either the Pump Transfer or Pressure Transfer filling procedures that follow.

Determine Proper Fill Weight

1. Visually inspect the container. Do not attempt to fill containers with broken or missing components.

2. Move the container to a filling station scale and weight it both with, and without, the fill hose attached to determine the weight of the fill line assembly. The difference is the fill line weight.

3. To determine the weight at which the fill should be stopped, add the desired filling weight (from the table below), the transfer line weight, and the Tare Weight from the container's data plate.

NOTE: The weight calculation includes the weight of residual liquid and is applicable to both Pressure Transfer and Pump Transfer filling methods.

WARNING: Filling operations should take place only in well ventilated areas. Accumulations of product gas can be very dangerous (refer to the safety precautions in the front of these instructions). Maintain adequate ventilation at all times.

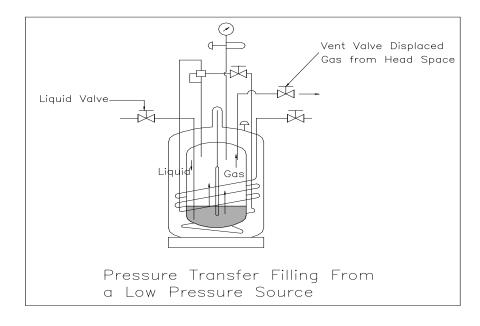
	XL-45HP	XL-50HP	XL-55HP	XL-60HP	XL-65HP	XL-70HP	XL-50VHP	XL-55VHP	XL-70VHP
ARGON	438 lb.	467 lb.	518 lb.	596 lb	614 lb	695 lb	443 lb.	478 lb.	658 lb.
ARGON	(199 kg)	(222 kg)	(235 kg)	(271 kg)	(279 kg)	(315 kg)	(201 kg)	(217 kg)	(299 kg)
CARBON	387 lb.	414 lb.	458 lb.	528 lb	545 lb	617 lb	381 lb.	411 lb.	566 lb.
DIOXIDE	(176 kg)	(188 kg)	(208 kg)	(240 kg)	(247 kg)	(280 kg)	(173 kg)	(187 kg)	(257 kg)
	252 lb.	269 lb.	298 lb.	343 lb	353 lb	400 lb	240 lb.	259 lb.	357 lb.
NITROGEN	(114 kg)	(122 kg)	(135 kg)	(156 kg)	(160 kg)	(181 kg)	(109 kg)	(118 kg)	(162 kg)
NITROUS	368 lb.	393 lb.	435 lb.	502 lb	518 lb	586 lb	N1/A	N1/A	N1/A
OXIDE	(167 kg)	(178 kg)	(197 kg)	(228 kg)	(235 kg)	(266 kg)	N/A	N/A	N/A
	360 lb.	385 lb.	426 lb.	491 lb	505 lb	572 lb	364 lb.	393 lb.	542 lb.
OXYGEN	(163 kg)	(175 kg)	(193 kg)	(223 kg)	(229 kg)	(259 kg)	(165 kg)	(178 kg)	(246 kg)

FILLING WEIGHTS

Solid CO₂ (Dry Ice) Formation- Carbon dioxide may form into the solid phase (dry ice) if the saturated pressure of the liquid is allowed drop below 70 psig (4.8 bar/483 kPa). In carbon dioxide service the pressure in al XL-45HP/50HP/55HP/60HP/65HP/70HP/50VHP/55VHP/70VHP must be maintained above this pressure to ensure a solid block will not form inside the container. If the container is being filled with CO₂, it may be necessary to pressurize the container with gaseous CO₂ before beginning the fill.

NOTE: If the pressure in the container is somehow lost, the dry ice block that forms may be thawed by pressurizing the cylinder to 280 psig (19.3 bar/1931 kPa) with carbon dioxide liquid and gas from an external source and allowing several days at this pressure to thaw the cylinder.

Pressure Transfer Filling

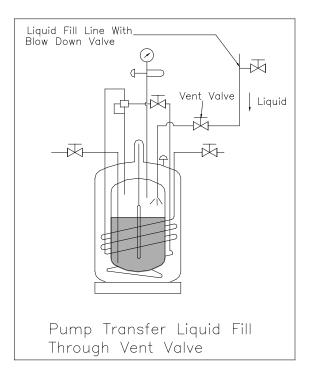

Filling a liquid cylinder using the pressure transfer method is common for 22 psig (1.5 bar/152 kPa) service where the product is used for refrigerant purposes. This method may also be used for higher pressure cylinders to increase liquid holding time. A fill is accomplished by first establishing a pressure difference between the source vessel and the XL-45HP / 50HP / 55HP / 60HP / 65HP / 70HP / 55VHP / 70VHP (higher pressure at the bulk vessel). The pressure differential will then push the liquid from the storage vessel to the container being filled. This method is employed when no transfer pump system is available or is a greater control over liquid temperature is desired.

Filling the container is accomplished through the LIQUID valve while the VENT valve is open or partially open to control product pressure. Careful control of pressure will control the amount of heat retained in the liquid. Lower pressure results in colder liquid transferred to the container and increases, or lengthens, product holding time.

Pressure Transfer Filling Procedure (Low Pressure Source)- Once you have determined the proper full weight for a container, connect a transfer hose to the LIQUID fitting from a low-pressure source of liquid.

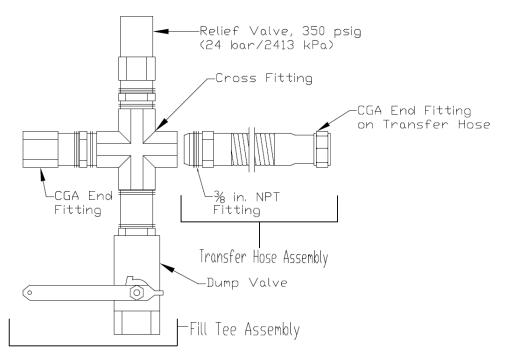
- 6. Open the supply valve. Then, on the XL-45HP / 50HP / 55HP / 60HP / 65HP / 70HP / 50VHP / 55VHP / 70VHP, open the LIQUID and VENT valves to begin the fill.
- 7. During the fill, monitor the container pressure and maintain a pressure of 10-15 psig (0.7-1 bar/69-103 kPa) by throttling the VENT valve.
- 8. When full weight is reached, closed both the LIQUID and the VENT valves.

- 9. Close the liquid supply valve and open the dump valve on fill line assembly.
- 10. Disconnect the fill line from the container and remove the container from the scale.


CAUTION: With carbon dioxide, pressure in the container being filled must be above 70 psig (4.8 bar/483 kPa) before the fill begins and at all times during the fill to prevent the product from freezing into dry ice.

Pump Transfer Filling Method

When a pump is used for filling liquid containers, the fill may be accomplished through either the VENT valve or LIQUID valve. Filling through the VENT valve recondenses gas in the area over the liquid in the cylinder and reduces product loss during the filling. This method will also result in liquid near the saturation temperature of the supply vessel. Filling through the LIQUID valve may provide colder liquid and longer holding time before the liquid warms to the point where the venting begins but will require more frequent venting and greater product loss.


Pump Transfer Filling Procedure - This method applies only to containers in gas service that are equipped with a 230 psig (16 bar/1586 kPa), 350 psig (24 bar/2413 kPa) or 500 psig (34 bar/3447 kPa) relief valve. Liquid is admitted through the VENT valve and recondenses gas in the head space during the fill. The fill line is connected from the liquid supply to the VENT valve on the cylinder. Both the fill line and the container should be precooled prior to beginning the fill process. Proper full weight is determined by the previously explained method.

- 5. Open the supply valve. Then, on the container being filled, open only the VENT valve to begin the fill. Start the pump at this time.
- 6. Observe the container pressure closely. If the pressure approaches the relief valve setting (or the pump pressure rating) stop the fill process at the supply and open the fill line dump valve to vent excess pressure. As soon as the pressure has dropped to a level that will allow you to resume the fill, close the dump valve and restart the pump (or reopen the supply valve).
- 7. When full weight is reached, close the VENT valve. Stop pump (where applicable), close liquid supply valve and open the dump valve on fill line assembly to vent trapped liquid.
- 8. Disconnect the fill line from the container and remove the container from the scale.

Fill Hose Kits

Taylor-Wharton fill hose kits for the XL-45HP/50HP/55HP/60HP/65HP/70HP/50VHP/55VHP/70VHP are designed to transfer specific liquefied gases to, or from, the containers. These accessories are comprised of a Fill Tee Assembly and a Fill Hose. Cryogenic transfer hoses are constructed of stainless steel for the transfer of cryogenic liquids and are available in four or six feet (1.2 or 1.8 m) lengths with 3/8 in.NPT fitting one one end and CGA service-specific female fittings on the other. A fill TeeAssembly consists of a cross fitting with a CGA end fitting, relief valve and manual dump valve.

In use, the CGA Tailpiece couples to the fill connection on the container being filled. The Relief vents pressure over 350 psig (24 bar/2413 kPa) that builds up in the fill line due to trapped liquid. The Dump Valve is used to allow the operator to blow-down the receiving container during a pump fill, or to relieve residual pressure from expanding liquid trapped in the line before disconnecting the fill line.

Fill kits are avaiable with different combinations of hose length and fittings for specific gas service. The following charts identify the available transfer hoses and fill tee assemblies.

Description	Cylinder	End Fittings	Part Number
(Service/Hose Length)	Connection(s)		
Inert (N2, Ar) Service			
4 ft. (1.2m) Stainless Steel	LIQUID or VENT Valve	CGA 295 to 3/8in. NPT	1700-9C65
6 ft. (1.8m) Stainless Steel	LIQUID or VENT Valve	CGA 295 to 3/8in. NPT	1600-9C66
6 ft. (1.8m) Stainless steel	USE Valve	CGA 580 to 3/8in. NPT	GL50-9C65
Oxygen Service			
6 ft. (1.8m) Stainless Steel	LIQUID or VENT Valve	CGA 440 to 3/8in. NPT	GL50-8C53
6 ft. (1.8m) Stainless steel	USE Valve	CGA 540 to 3/8in. NPT	GL50-8C56
Carbon Dioxide Service			
4 ft. (1.2m) Stainless Steel	LIQUID or USE valve	CGA 320 to 3/8in. NPT	HP50-8C51
6 ft. (1.8m) Stainless Steel	VENT Valve	CGA 295 to 3/8in. NPT	1700-9C65
6 ft. (1.8m) Stainless steel	VENT Valve	CGA 295 to 3/8in. NPT	1600-9C66
Nitrous Oxide Service			
4 ft. (1.2m) Stainless Steel	VENT Valve	CGA 295 to 3/8in. NPT	1700-9C65
6 ft. (1.8m) Stainless Steel	VENT Valve	CGA 295 to 3/8in. NPT	1600-9C66

TRANSFER HOSE CHART

VENT TEE CHART

The vent tee connects to a transfer hose to complete a fill line kit. Each assembly includes a 3/8 in. pipe connector to CGA fitting with 350 psig (24 bar/2413 kPa) relief valve, and a ball-type dump valve.

Service	CGA Connection	Part Number
Inert (N ₂ , Ar)	CGA 295	GL50-8C60

MAINTENANCE PROCEDURE

Read the Safety Precautions in the front of this manual before attempting any repairs on these containers. Also follow these additional safety guidelines while performing container maintenance.

Never work on a pressurized container. Open the vent valve as standard practice during maintenance to guard against pressure build-up from residual liquid.

Use only repair parts cleaned for oxygen service. Be certain your tools are free of oil and grease. This is a good maintenance practice and helps to ensure you do not create a combustion hazard when working on containers for oxygen or nitrous oxide service.

Leak test connections after every repair. Pressurize the container with an appropriate inert gas for leak testing. Use only approve leak test solutions and follow the manufacturer's recommendations. "Snoop" Liquid Detector is one approved solution.

WARNING: For O2 System User: Residue of leak detectors solutions can be flammable. All surfaces to which the leak detector solutions have been applied must be adequately rinsed with portable water to remove all traces of residue. Refer CGA G-4 Section 4.9.

CAUTION: Carbon Dioxide may form into the solid phase (dry ice) if the pressure of the liquid is allowed to drop below 70 psig (4.8 bar/483 kPa). Pressure in the container must be maintained above this value to ensure a solid block of CO_2 will not form inside the container. Before performing maintenance on an XL-45HP/50HP/55HP/50VHP/55VHP in CO_2 service, the contents must be transferred to another container so that container pressure can be released.

CONVERTING A CONTAINER TO A DIFFERENT GAS SERVICE

XL-45HP/50HP/55HP/60HP/65HP/70HP/50VHP/55VHP/70VHP cylinders may be converted from one service to another within the confines of the argon, nitrogen, and oxygen service for which the containers are designed. Conversion consists of changing the end connections at the USE, LIQUID, and VENT valves; then changing the liquid level gauge snap on indicator; and revising product decals. Parts are available in kit form for each gas service as illustrated in the following table.

Service Change Procedure

Before remove any parts, empty the container and open the vent valve to prevent any pressure build-up in the unit.

- 7. Remove the LIQUID, VENT, and USE end fittings, one at a time, with standard wrenches. Install new fittings from the Gas Service Change Kit, using Teflon tape or another oxygen compatible thread sealant.
- 8. Remove the protective cover over the liquid level gauge. Replace the snap on content scale with the one for the new gas service from the service change kit, then reinstall the protective cover.
- 9. Install new fittings for the USE, VENT, and LIQUID connections from the Gas Service Change Kit. Leak test the fittings you just replaced and change the gas service decals to complete the conversion.

CAUTION:

When changing gas service, install the proper fitting- DO NOT use adapters. The following procedures address the physical changes to the container only. For detailed procedures on the decontamination of the container itself, refer CGA pamphlet C-10 "Changes of Service for Cylinders including Procedures for Inspection and Contamination Removal."

Carbon Dioxide and Nitrous Oxide may contain contaminants such as hydrocarbon, which are not easily removed from cylinders, and associated components by conventional oxygen service cleaning procedure. Once a cylinder is replaced into CO2 or N2O gas service, it should never be converted to another gas service. See CGA pamphlet C-10 for proper procedure.

Kit		Valve	Connection
Part No.	Gas Service	Name	Designation
		LIQUID	CGA 440
GL50-8C35	Oxygen	VENT	CGA 440
		USE	CGA 540
		LIQUID	CGA 295
GL50-8C30	Nitrogen	VENT	CGA 295
	-	USE	CGA 580
		LIQUID	CGA 295
GL50-8C31	Argon	VENT	CGA 295
		USE	CGA 580

GAS SERVICE CHANGE KITS

HP50-8C30	Carbon Dioxide	LIQUID VENT	CGA 320 CGA 295
		USE	CGA 320
		LIQUID	CGA 326
HP50-8C35	Nitrous Oxide	VENT	CGA 295
		USE	CGA 326

PURGE PROCEDURE

After changing the cylinder in service, determine the level of purity in the pressure vessel. If the pressure vessel contents purity is unacceptable, perform a product purge to reduce contaminants. The following procedure is recommended for the applications:

- 7. Attach the warm nitrogen, N2, product source to the LIQUID VALVE. Approximately 40 psig product delivery pressure should be achieved. The positive pressure must always be maintained in the cylinder during purge procedure to prevent drawing atmospheric contaminants back into the cylinder.
- 8. Closed all valves. Before venting to atmosphere ensure that such venting is allowed by all applicable site regulations and codes.
- 9. Open VENT VALVE and USE VALVE. Vent the inner vessel to 5 psig (34kPa) as indicated on the PRESSURE GAUGE. Close VENT VALVE and USE VALVE.
- 10. At this low pressure 5 psig (68kPa), loosen both the compression fitting connections on the DUAL PRESSURE BUILDING/ECONOMIZER REGULATOR so that N2 vented thru these connections. Then retighten the connections while the cylinder is still on positive pressure.
- 11. Repeat purge procedure 1 through 3 until an acceptable product purity is achieved.
- 12. After completion of cylinder purge, make sure that all valves are closed.

REGULATOR MAINTENANCE

A dual stage, spring loaded regulator is employed for the pressure building/economizer circuit. This regulator can be adjusted on the container, replaced, or checked and adjusted off the container in a readily fabricated bench adjustment fixture.

Regulator Adjustment- On container

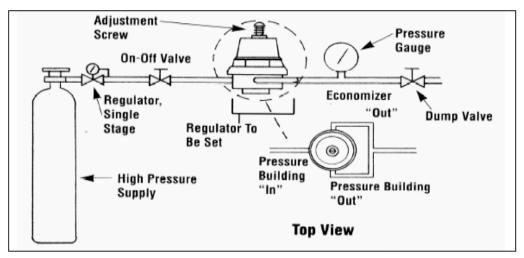
- 7. Fill the container with appropriate liquid product.
- 8. Open the Pressure Building Valve and allow the container pressure to stabilize for about an hour. Note the point where the pressure stabilizes.
- 9. Adjust the screw on the top of the regulator to raise or lower the pressure to the desired point. When decreasing the setting, the pressure building valve must be closed and the container vented to a lower pressure. Then repeat step 2 in order to observe the change.

Note: One clockwise turn of the adjustment will raise the set point by approximately 30 psig (2 bar /207 kPa). See the chart below to determine the range of adjustment for the regulator you are servicing. Do not attempt to set the regulator to a pressure outside of its design range.

Part No.	Normal Setting`	Range	Delta
	400 psig	300 to 600 psig	20 psig
8816-1060	28.0 bar	20.7 to 41 bar	1.4 bar
	2758 kPa	2068 to 4137 kPa	138 kPa

REGULATOR ADJUSTMENT RANGES

	300 psig	150 to 350 psig	20 psig
6999-9018	20.7 bar	10.3 to 24.1 bar	1.4 bar
	2068 kPa	1034 to 2413 kPa	138 kPa


Regulator Removal or Replacement Procedure

- 17. Close manual Pressure Building valve.
- 18. Vent the container to atmospheric pressure. (For units in CO₂ service, see caution for releasing pressure at the Maintenance Section.)
- 19. Loosen and remove both the tube connections on the pressure building and economizer side of the regulator.
- 20. Remove the regulator from the container by unscrewing the valve body and elbow from the output of the pressure building valve.
- 21. Repair the regulator and readjust its set point using the bench test setup.
- 22. To install a replacement or readjusted regulator, apply Teflon tape to the elbow on the container and thread the valve body onto the elbow.
- 23. Reconnect the tube connections to the regulator and tighten.
- 24. Pressurize the container and check it for leaks.

Regulator Adjustment-Bench Procedure

Assemble the regulator adjustment fixture, and the regulator to be adjusted, as shown in the accompanying illustration.

- 17. Leak test joint between the high-pressure cylinder regulator and the dump valve. Joints must be leak free before proceeding.
- 18. Close the ON/OFF valve, and the dump valve.
- 19. Slightly open the high-pressure cylinder valve.
- 20. Set the high-pressure regulator above the desired set point for the Pressure Building set point.
- 21. Slowly open ON/OFF valve and observe the downstream pressure gauge.
- 22. When the regulator under test closes, the P.B. set point may be read on the downstream pressure gauge.
- 23. Close the ON/OFF valve and open the Dump valve.
- 24. To reset the regulator, loosen the locknut on the adjusting screw. Raise the set point by turning the adjusting screw clockwise; lower the set point by turning the screw counterclockwise. After adjustment, repeat step 5 and 6 to check the setting before reinstalling the regulator on the liquid container.
 - Note: The regulator has directional gas flow. The arrow on the regulator body must point in direction indicated in the Bench Adjustment Fixture illustration. The economizer portion of the regulator has already opened approximately 20 psig (1.4 bar/ 138 kPa) below the pressure building set point.

Regulator Bench Adjustment Fixture

CHECKING CONTAINER PERFORMANCE

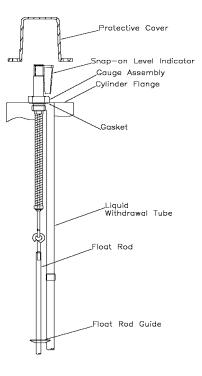
Cryogenic containers are two containers, one within the other. The space between the container acts as highly efficient thermal barrier including high technology insulation, a vacuum, and a vacuum maintenance system. Each serves a very important part in the useful life of the container. The high technology is very effective in preventing radiated heat from entering the inner container. The vacuum prevents heats convection or conduction from reaching the inner container. Unfortunately, the perfect vacuum cannot be achieved since trace gas molecules begin to enter the vacuum space from the moment of manufacture. The vacuum maintenance system consists of materials which gather trace gas molecules from the vacuum space. The maintenance system can perform its function for years, but it has a limited capacity. When the vacuum maintenance system is saturated it can no longer maintain the vacuum integrity of the container. The change will be very gradual and may go unnoticed for several years. When the vacuum in the insulation space is no longer effective, the following symptoms may appear:

- 11. With liquid in the container and pressure building/vaporizer coil not in use, the outer casing will be much colder than comparative container.
- 12. Frost, indicating the liquid level, may be visible on the outer casing of the container.
- 13. The container may appear to "sweat" if the air surrounding the container is hot and humid.
- 14. The relief valve will open continuously until the container is empty.
- 15. The container will hold pressure for several days but will not hold liquid.

NER Testing

If a loss of vacuum integrity is suspected, the container's Normal Evaporation Rate (NER) should be checked. The test measures the actual product lost over time, so you can compare the results obtained to the NER value in the SPECIFICATIONS table. A test period of 48 hours is recommended, after the container is allowed to stabilize, but the formula given produces a Daily NER over any time period.

- 9. Fill the container with 150 pounds (68 kg) of liquid nitrogen.
- 10. Close the LIQUID and the PRESSURE BUILDING valves and leave the VENT valve open. Allow it to remain open during test.
- 11. Allow the container to stabilize for 24 hours, reweigh it. Record the weight, time, and date.
- 12. Reweigh 48 hours later. The test is most effective if container is not moved during this period. Record the second test date, time, and weight.


The following calculation will provide the actual Normal Evaporation Rate in pounds-per-day. Daily normal evaporation is simply half the loss over 48 hours.

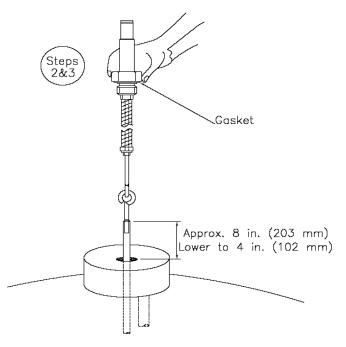
Compare the results of your test to the "as manufactured" NER value in the SPECIFICATIONS section of this manual. A Container in service should maintain an NER value of less than two times the new specification. Any test result greater than two times the listed value is indicative of a failed, or failing, vacuum. If NER is found to be high, contact Taylor-Wharton Customer Service.

NOTE: Fill through the LIQUID valve with the VENT valve open. The Pressure Building valve must be closed during the NER test or P.B. operation will increase evaporation and invalidate test results.

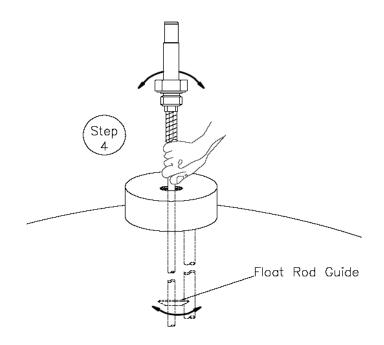
FULL VIEW CONTENTS GAUGE MAINTENANCE

The content of these containers is measured with Full View Contents Gauge. The device consists of the gauge assembly beneath a clear plastic protective cover. When the gauge is assembled, a snap on level indicator is magnetically coupled to the top of a float rod and moves up and down with the changing level of the liquid in the container.

Removing the Full View Contents Gauge


- 9. Vent all pressure from container.
- 10. Remove the protective cover by removing three bolts from the base of the cover.
- 11. Unscrew the gauge body using a wrench on hex fitting at base of the indicator.
- 12. Lift the entire gauge assembly free of the container. The gauge assembly is long and may be very cold. Gloves should be used to protect your skin.

WARNING: Cold surfaces should never be handled with bare skin. Use gloves and other protective clothing when performing this procedure.


Contents Gauge Installation

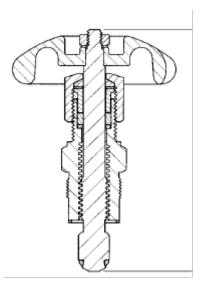
Before installing a new gauge or repaired, inspect the gasket seals. If any damage is apparent, replace the gasket.

- 15. When inserting the gauge assembly, lower the float rod through the gauge opening until about 8 inches (203 mm) of the float rod remains above the container.
- 16. Grasp the clear cover portion of the gauge assembly with two fingers so that the assembly hangs free and "plumb."
- 17. Lower the assembly about 4 inches (102 mm) slowly and try to keep the rod in the centre of the threaded entrance hole as you do. If you are careful during this portion of insertion, you will drop the float rod straight through the guide ring inside the cylinder.

18. To confirm that the rod is correctly positioned in the cylinder, stop where you can still grasp the top of the rod and try to swing the lower end from side to side.

- 19. When the rod is engaged in the guide ring, the rod will be restricted to lower end movement of about ½" inches (12.7 mm); if the you can feel greater movement, withdraw the rod to the point where its top is 8 inches (203 mm) above the gauge opening and try again.
- 20. When you are satisfied that the float rod is correctly installed, lower the assembly the rest of the way into the container until the top portion threads can be engaged.
- 21. Screw the gauge in place and hand torque to about 20 ft-lbs (2.8 kgf m). Leaks check the connection of gauge to the flange.

CAUTION:


When installing the gauge assembly, care must be taken to ensure that the float rod is inserted through "guide ring" located on the liquid withdrawal line inside the container. If the gauge does not engage this ring, the contents indication will be inaccurate, or the gauge may be damaged in use.

HAND VALVE REPAIR

Hand valves are an integral part of the container, and the valve bodies rarely need replacement. However, the hand wheel and internal parts of the valves are renewable. The illustration below is a view of the valve replaceable part used on Taylor-Wharton liquid container.

Valve Repair Kit Assembly

Fits: 3/8 in Rego Globe valve.

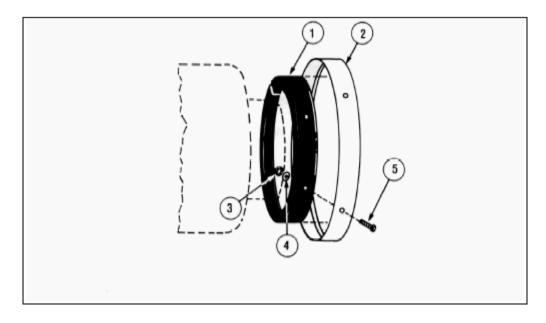
KIT PARTS- Kit P/N 1750-9C35

Valve Disassembly Instructions

- 7. Open valve by turning Handwheel counterclockwise as far as it will go to release any trapped gas in the system.
- 8. Using a large adjustable wrench to hold valve body, remove Bonnet by turning counterclockwise with a 15/16 inches socket wrench that capable of developing at least 80 ft. lbs (22 kgf m) torque.
- 9. Remove the Handwheel assembly from the valve body and discard. Inspect body and clean if necessary; be sure interior and seal areas are free from dirt, residue and foreign particles.

CAUTION:

Do not apply force after valve is fully open. Do not scratch or mark internal surface of valve.


Valve Replacement Instructions

- 5. Thread Handwheel Assembly into valve body until properly seated.
- 6. Turn Handwheel completely clockwise to close valve. Re-pressurize container and leak check valve.

SHOCK MOUNT FOOT RING

Item No.	Description	Part No.	Qty.
1	Rubber Shock Ring	XL50-4C18	1
2	Foot Ring	XL50-4C19	1
3	Hex Nut	6310-0135	4
4	Washer	6430-0125	4
5	Carriage Bolt	6620-0401	4

Shock Mount Foot Ring- Exploded View

Replacement of Shock Mount Foot Ring

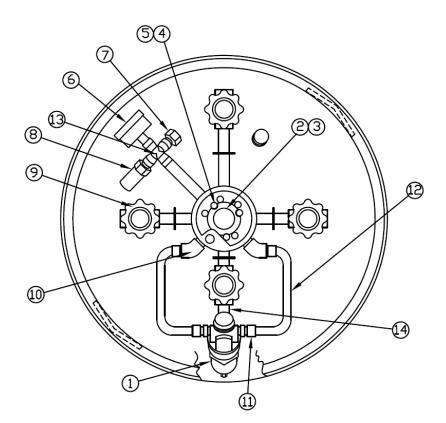
- 15. Empty or transfer all contents of tank. Vent to atmospheric pressure.
- 16. Gently lay the container on its side and unbolt the four (4) carriage bolts that attached the foot ring and rubber ring to the tank.
- 17. Slide off the damaged foot ring and rubber shock ring.
- 18. Assemble rubber shock ring into new foot ring and force over shock mount ring on container. Use a rubber hammer to drive the rubber shock ring into place.
- 19. Using a $\frac{1}{2}$ inch drill bit, drill holes through rubber so that the carriage bolt slides in smoothly.
- 20. The holes in foot ring must be position in alignment with holes in shock mount ring. Using the 4 bolts, washers and nuts, fasten the new parts to the container.
- 21. After securing the shock mount ring, gently lift the container to the upright position and inspect your work.

Note: If the original Shock Mount Ring is badly damaged, we recommend that an NER test is performed to ensure that no internal damage has resulted from the impact of the shock mount ring.

TROUBLESHOOTING

The following chart is provided to give you some guidance in determining the probable cause and suggested corrective action for some problems that may occur with cryogenic liquid containers. This chart is specifically tailored to your XL-45HP, XL-50HP, XL-55HP, XL-60HP, XL-65HP, XL-70HP or XL-50VHP, XL-55VHP, XL-70VHP.

TROUBLESHOOTING CHART					
Symptom	Possible Cause	Corrective Action			
Consistently low operating pressure.	 Relief valve open at low pressure. 	6. Remove and replace relief valve.			
	 Economizer side of P.B./Economizer Regulator stuck open. 	7. Remove and replace regulator			
	8. Cold liquid.	8. Open pressure building valve. With P.B. inoperative, the container will build pressure over time, or an external pressure source can be used to pressurize container.			
No pressure shown on container pressure gauge.	10. Bad container pressure gauge.	11. Remove and replace bad gauge.			
	11. Open inner container bursting disc.	12. Remove and replace bursting disc. Pressurize container and check relief valve operation.			
	12. Leaks in valves or plumbing.	13. Leak test and repair leaks. For valve repairs, see Maintenance section.			
	13. Cold liquid.	14. Open pressure building circuit.			
No pressure showing but container is full by weight.	 Broken pressure gauge. Vent valve open/P.B. valve closed. 	 Replace pressure gauge. Close vent valve, open P.B valve. 			
	9. Faulty relief valve.	9. Replace relief valve.			
Container full by weight and Liquid Level Gauge but very	1. Liquid too cold.	 Open P.B. valve or allow to stand. 			
low pressure.	 Possible leak in vent valve. 	2. Rebuild valve.			
	3. Faulty relief valve	3. Replace valve.			
Container is cold and may have ice or frost on outer casing. Will not hold liquid	 Vacuum loss. Check NER. 	 Consult with Taylor-Wharton for course of action. Do not attempt to put additional liquid container. 			
overnight. Relief valve is venting gas.	 Defective P.B./Economizer regulator. 	 Look for P.B coil pattern in ice. Close P.B. valve. Replace or reset regulator. 			
Ice formation on bottom of container when P.B. valve is	 Pressure building valve not closing properly. 	5. Replace or rebuild valve.			
closed.	 Leak in pressure building system top-works. 	 Leak test piping connections and tighten fitting if needed. 			
Container vents through relief valve when in use.	Pressure Building/ Economizer Regulator set above relief valve setting. Economizer side of regulator clogged or stuck open.	Remove and reset or replace regulator.			

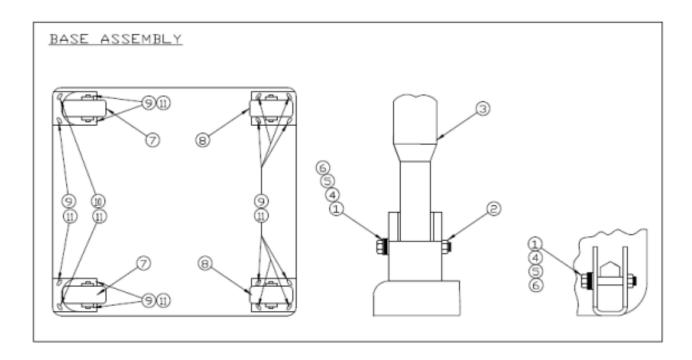

TROUBLESHOOTING CHART

Container vents after fill but quits after a while.	This may be caused by residual heat vaporizing some liquid inside container and is a normal condition.	Symptom should go away once container reaches operating temperature and the liquid reaches its saturation point at container operating pressure.
Container vents gas continuously through relief valve.	Heat leak may be too great.	Perform container performance evaluation test per Maintenance section to determine if container vacuum is adequate.
Level indicator stuck ½ full. Yellow indicator ring will not move.	Float rod stuck on or in float rod guide.	Reinstall. See Contents Gauge Installation section.
Level indicator at bottom of gauge. Container full of product.	Indicator disengaged from gauge rod. Caused by dropping the container.	Recouple indicator using re- engagement ring.

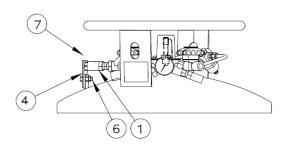
REPLACEMENT PARTS

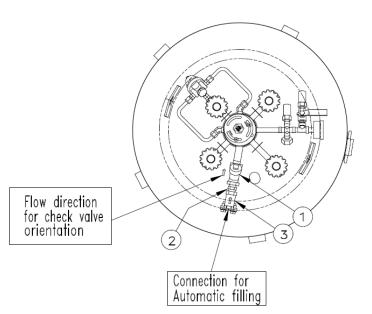
This replacement parts list includes a recommended inventory quantity which allows you to order parts on timely basis to keep all your XL-45HP /50HP /55HP /60HP /65HP /70HP /50VHP /55VHP /70VHP containers in service. When placing order, please use the nomenclature and part numbers in this section.

COMPONENT LOCATION


Index No.	Descriptions	Part No.	Recommended for 10 Units
1	Dual Regulator, Pressure Building/Economizer 400 psig (28 bar/2758 kPa)- for XL-50/55/70VHP Only	8816-1060	2 Each
	Dual Regulator, Pressure Building/Economizer 300 psig (20.9 bar/2068 kPa)	6999-9018	2 Each
	**Dual Regulator, pressure Building/Economizer 125 psig (8.6 bar/862 kPa) – Not for CO ₂ service	6999-9015	2 Each
2	*Gasket, Glass Filled Teflon, Contents Gauge	7701-0083	5 Each
3	Liquid Level Indicator Inert Spring	GL45-9C65	1 Each
	Float Rod (45HP)	GL45-9C96	1 Each
	Float Rod (50HP/55HP/50VHP/55VHP)	GL50-9C97	1 Each
	Float Rod (60HP/65HP)	GL45-9C94	1 Each
	Float Rod (70HP/70VHP)	GL45-9C95	1 Each
	Nitrogen, indicator Scale	GL45-9C75	4 Each
	Argon, indicator Scale	GL45-9C76	4 Each
	Oxygen, indicator Scale	GL45-9C77	4 Each
	Carbon Dioxide, indicator Scale	BC04-9C75	4 Each

4	Screw, brass, 1/4inch-20 UNC x 5/8 inch	6114-1087	10 Each
5	Washer, Lock, ¼ inch, stainless steel	6460-2025	10 Each
6	Gauge, Pressure 0-600 psig (0-41.4 bar / 0-4137 kPa)	1700-9C15	2 Each
7	Safety Head, 525 psig (36 bar/3620 kPa)	1705-9C12	2 Each
	Safety Head, 750 psig (52 bar/5171 kPa)- for XL- 50/55/70VHP Only	7815-3085	2 Each
8	Relief valve, 350 psig (24 bar/2413 kPa)	1705-9C39 (Rego) 6913-9071 (Generant)	5 Each
	500 psig (34 bar/3447 kPa)-not for CO ₂ -for XL- 50/55/70VHP Only	6913-9061	2 Each
	500 psig (34 bar/3447 kPa)-for CO2-for XL- 50/55/70VHP Only	6913-9062	2 Each
	**22 psig (1.5 bar/152 kPa)- Not for CO_2 or N_2O	1700-9069 (Rego) 6913-9069 (Generant)	5 Each
	**230 psig (16 bar/1586kPa)- Not for CO_2 or N_2O	1700-9C39 (Rego) 6913-9070 (Generant)	5 Each
9	Valve Repair Kit	1750-9C35	3 Each
10	Elbow, Male, Brass 45 ^o , 3/8in. ODT-comp x ¹ / ₄ in.	6814-9233	2 Each
11	Connector, Male, Brass, 3/8 in. ODT-comp x 1/4in. NPT-EXT	4570-1960	2 Each
12	Tube, P.B./Economizer Line	GL45-9C20	2 Each
13	Relief Cross Brazed Assembly	GL55-9C29	2 Each
14	Elbow, Male, 45°, 3/8 in. NPT x ¼ in. NPT	6814-9241	2 Each
15	USE (CGA 540)-oxygen	7114-0613	5 Each
	USE (CGA 580)-argon/nitrogen	7114-0614	5 Each
	USE (CGA 320)-carbon dioxide	7114-0181	5 Each
	USE (CGA 326)-nitrous oxide	7114-0195	5 Each
	LIQUID (CGA 440)- oxygen	6514-8992	5 Each
	LIQUID (CGA 295)-argon/nitrogen	7355-4712	5 Each
	LIQUID (CGA 320)- carbon dioxide	7114-0681	5 Each
	LIQUID (CGA 326)- nitrous oxide	7114-0195	5 Each
	VENT (CGA 440)-oxygen	6514-8892	5 Each
	VENT (CGA 295)-argon/nitrogen	7355-4712	5 Each
	VENT (CGA 295)- carbon dioxide	7355-4712	5 Each
	VENT (CGA 295)- nitrous oxide	7355-4712	5 Each
	*Decal, Warning	1700-9C07	4 Each
	*Decal, Nitrogen service	GL55-9C51	A/R
	*Decal, Oxygen service	GL55-9C52	A/R
	*Decal, Argon service	GL55-9C53	A/R
	*Decal, Carbon Dioxide service	GL55-9C54	A/R
	*Decal, Nitrous Oxide service	GL55-9C55	A/R
	*Decal, UN Number, Nitrogen	GI55-9C63	A/R
	*Decal, UN Number, Oxygen	GL55-9C64	A/R
	*Decal, UN Number, Argon	GL55-9C65	A/R
*Not illustra	*Decal, UN Number, Carbon Dioxide	GL55-9C66	A/R


*Not illustrated **Optional/Not illustrated


ltem No.	Description	Part No.	Recommended for 10 units
1	Cap screw, Hex Head, ½"-13UNC, S.S.	6164-1753	10 each
2	Hex Nut, Nylon Insert	6331-1183	10 each
3	Handle	XL65-9C31	1 each
4	Flat Washer, S.S.	6460-9024	10 each
5	Spring Washer, S.S.	6460-9025	10 each
6	Flat Washer, Teflon	6160-9026	10 each
7	Caster, Swivel with brake, 4 in. Dia. Wheel	7300-9021	5 each
	*Caster, Swivel 4 in. Dia. Wheel	7300-9023	5 each
8	Caster, Rigid 4 in. Dia. Wheel	7300-9022	5 each
9	Carriage Bolt,3/8"-16UNC, 1 ¼" L, S.S.	6160-4766	10 each
	*Carriage Bolt, M8 X 25mm L, S.S.	6160-4763	20 each
10	Hex Head Cap screw,3/8"-16UNC, 1" L, S.S	6164-1133	10 each
11	Elastic Stop Nut, S.S.	6368-9110	10 each
	*Nylock Elastic Stop Nut, M8, S.S.	6311-1044	20 each

*Applicable for 5-caster round base model only

ADDITIONAL COMPONENT FOR EXPRESS-FILL VERSION

REPLACEMENT PARTS

Number	Description	Part Number				
1	Check Valve, 1/2 NPT	6913-9365				
2	Hex Nipple, 1/2 NPT	6719-9995				
3	Check Valve, In-Line, 1/2 NPT	6913-9370				
4	Check Valve Bracket	EZ65-9C92				
5	Capscrew	6164-1133				
6	Nuts	6310-0135				
CGA Connections						
7	Oxygen	6514 - 8990				
7	Nitrogen	7355 - 4698				
7	Argon	7355 - 4698				

THE EXPRESS-FILL VERSION NOTE

Please refer to those operating instructions for General Information and data related to Safety, Operation, Maintenance, Specifications, Troubleshooting, and Replacement Parts.

These cylinders are designed to be filled automatically using the Express Cryogenic Delivery System or by conventional means. Automatic filling eliminates product loses due to venting. The

Express cylinders are designed to automatically stop the fill process when the liquid level in the cylinder reaches a set level. Refer to Express Truck manual (section 5.6) for automatic filling instruction. The automatic fill shut-off will operate only when filled by the Express Cryogenic

Delivery System. The automatic fill shut-off will not function during conventional filling. When filling cylinder for transportation, maximum liquid weight should not be exceeded regardless of fill method. See "Filling the Container" for details. Before connecting the Express System-fill hose to the cylinder, visually check the CGA connection for cleanliness, and obstructions.

ACCESSORIES

Accessories available for use with Taylor-Wharton XL-Series containers are:

-Manifold, Automatic and Manual

-Container Hand Trucks

-Vaporizer adding up to 250 cfh (6.6 cu.m/h) each

• PN: VP50-7C10

-Gas Service Changeover Kits

• PN:	GL50-8C35	CGA 440	LIQUID / VENT	O2 Service
		CGA 540	USE	O2 Service
• PN:	GL50-8C30	CGA 295	LIQUID / VENT	N2 Service
		CGA 580	USE	N2 Service
• PN:	GL50-8C31	CGA 295	LIQIUD / VENT	AR Service
		CGA 580	USE	AR Service
• PN:	HP50-8C30	CGA 320	LIQUID / USE	CO2 Service
		CGA 295	VENT	CO2 Service
• PN:	HP50-8C35	CGA 326	LIQUID / USE	N2O Service
		CGA 295	VENT	N2O Service

-Transfer Hoses

• PN: 1700-9C65 4 ft X CGA 295 X 3/8" NPT LIQUID / VENT N2/AR/CO2 Service N2/AR/CO2 Service

N2/AR Service

O2 Service

O2 Service

CO2 Service

- PN: 1600-9C66 6 ft X CGA 295 X 3/8" NPT LIQUID / VENT
- 6 ft X CGA 580 X 3/8" NPT USE • PN: GL50-8C51
- 6 ft X CGA 440 X 3/8" NPT LIQUID / VENT • PN: GL50-8C53
- PN: GL50-8C56 6 ft X CGA 440 X 3/8" NPT USE
- PN: HP50-8C51 6 ft X CGA 320 X 3/8" NPT LIQUID / USE

-Cryogenic Phase Separators

- PN: 1193-8C80 2 ³⁄₄" X 1 3/8" OD (3/8" NPT)
- PN: 1193-8C82 1 ¼" X 1" OD (3/8" NPT) •
- PN: 1193-8C83 1 ¼" X 1/2" OD (1/8" NPT)

-Fill Tee Assemblies

• PN: GL50-8C60

For additional information concerning the accessory of your choice, please consult the separate manuals on accessories or call Taylor-Wharton.

QUALITY WARRANTY CERTIFICATES TAYLOR-WHARTON XL SERIES LIQUID CYLINDERS

Taylor-Wharton warrants to the original purchaser that the internal structural support system of each XL Series Liquid Cylinder shall be free of defects in materials and workmanship for the life of the product if it is used and maintained according to Taylor-Wharton's published instructions. Taylor-Wharton warrants to the original purchaser of the following:

- 5. Vacuum Deterioration: The Vacuum system employed on each XL Series Liquid Cylinders is warranted to maintain thermal performance or Net Evaporation Rate (NER) within 10% of Taylor-Wharton's published specifications for a period of five years from date of shipment to the initial purchaser if the product is used and maintained according to Taylor-Wharton's published instructions.
- 6. Plumbing and control Valves: All components supplied by Taylor-Wharton and used on this product are warranted to be free from defects in materials and workmanship, in the normal service for which the product was manufactured, for a period of one year from the date of shipment to the original purchaser.

To validate the warranty, the purchaser must abide to the following: 1) Immediate discontinue use of the product to further investigation. 2) Purchaser to confirm that defect is due to either of the above by written notice to Taylor-Wharton within 48 hours after confirmation of a claimed defect. Upon receiving official notice, Taylor-Wharton will act as follows: 1) Were the defect is due to vacuum deterioration, Taylor-Wharton will ask the purchaser to return such product freight prepaid to Taylor-Wharton for further evaluation to validate to warranty claim. If the claimed defect is confirmed by Taylor-Wharton's inspection will submit a report to customer, at its option and as the purchaser's sole remedy, repair or replace such product or any component part thereof or refund the original purchase price. If no defect is found or after correction of a confirmed defect, Taylor-Wharton will return the equipment at purchaser's expense. 2) If the defective is due to plumbing and control valves, Taylor-Wharton will require sending replacement parts to the purchaser for reinstallation by purchaser.

This warranty is voided by alterations or by repairs of others. Taylor-Wharton shall not be liable under this warranty, or otherwise, for defects caused by negligence, abuse or misuse of the product, corrosion, fire, heat, or the effects of normal wear. Any related components or other equipment manufactured by others which may be sold with

Taylor-Wharton's products are not covered by this warranty.

THIS WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES SET FORTH HEREIN ARE EXCLUSIVE. TAYLOR-WHARTON SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES RESULTING FROM THE DELIVERY, USE OR FAILURE OF THE PRODUCT (INCLUDING LOSS OF ANY MATERIAL STORED IN THE PRODUCT), OR FROM ANY OTHER CAUSE WHATSOEVER BY ACCEPTING DELIVERY OF THE PRODUCT SOLD HEREUNDER, THE PURCHASER ACKNOWLEDGES THAT THIS LIMITATION OF REMEDIES IS REASONSABLE AND ENFORCEABLE. IN NO EVENT SHALL TAYLORWHARTON'S LIABILITY EXCEED THE PURCHASE PRICE FOR THE PRODUCT.

Taylor-Wharton Malaysia Sdn Bhd (776817-V) Lot PT 5073, 5076 & 5077, Jalan Jangur 28/43, Hicom Industrial Estate, Section 28, 40400 Shah Alam, Malaysia www.twcrvo.com