Taylor-Wharton

Since 1742

Instruction for Storage and Transport Containers for XL ${ }^{\text {TM }}$ (LC) Series:

Trademark Model	XL $^{\text {TM }} 70 \mathrm{LP}$	XL $^{\text {TM }} 126 \mathrm{LP}$	XL $^{\mathrm{TM}} 186 \mathrm{LP}$	XL $^{\mathrm{TM}} 189 \mathrm{LP}$	XL $^{\mathrm{TM}} \mathbf{2 5 0 L P}$
Model Type per Approval	LC70L	LC126L	LC186L	LC189L	LC250L

Do not attempt to use or maintain this unit until you read and understand these instructions. Do not permit untrained persons to use or maintain this unit. If you do not fully understand this instruction, contact your supplier for further information.

TAYLOR- WHARTON MALAYSIA SDN. BHD
Lot Nos. PT5073, 5076 \& 5077
Jalan Jangur 28/43
Hicom Industrial Estate 40400 Shah Alam
Selangor Darul Ehsan, Malaysia
Fax: 0060351911472

Contents

Page

1. Container Safety 3
2. Product Description 4
3. Specification 4
4. Handling of the Container 6
5. Operation 6
6. Component Description 7
7. Filling the Container 10
8. Withdrawal Liquid from the Container 12
9. Repair and Maintenance 12
10. Change of Gas Service 12
11. Purge Procedure 13
12. Checking Container Performance 14
13. Check the Normal Evaporation Rate (NER Test) 14
14. The Liquid Contents Gauge 15
15. Replacement Instruction 16
16. Trouble Shooting Chart 21
Disclaimer 22

1. Container Safety

Pressure Hazard - The containers covered by this literature contain liquefied gas under pressure up to 10 bars. Sudden release of this pressure may cause personal injury by issuing cold gas or liquid, or by expelling parts during servicing. Do not attempt any repairs on these containers until all pressure is released, and the contents have been allowed to vaporize to ensure no pressure build up can occur.

Extreme Cold - Cover Eyes and Exposed Skin - Accidental contact of the skin or eyes with any cryogenic liquid or cold issuing gas may cause a freezing injury similar to frostbite. Protect your eyes and cover your skin when handling the container or transferring liquid, or in any instance where the possibility of contact with liquid, cold pipes, and cold gas may exist. Safety goggles or a face shield should be worn when withdrawing liquid or gas. Long-sleeved clothing and gloves that can be easily removed are recommended for skin protection. Cryogenic liquid is extremely cold and will be at temperatures below minus $196^{\circ} \mathrm{C}$ under normal atmospheric pressure.

Keep Equipment Well Ventilated - Although the gases used in these containers are non-toxic and nonflammable, they can cause asphyxiation in a confined area without adequate ventilation. An atmosphere that does not contain enough oxygen for breathing can cause dizziness, unconsciousness, or even death. These gases cannot be detected by the human senses and will be inhaled normally as if they were air. Ensure there is adequate ventilation where these gases are used and store liquid containers outdoors or only in a well-ventilated area.

Replacement Parts Must be 'Cleaned for Oxygen service ' - Some materials, especially nonmetallic gaskets and seal, can be a combustion hazard if used in oxygen or nitrous oxide service. Use only Taylor-Wharton recommended spare parts, and be certain parts used are properly cleaned to prevent contamination of stored product. For information on cleaning, consult the Compressed Gas Association (CGA) pamphlet G4.1, "Cleaning for Oxygen Service" or equivalent industrial cleaning specifications.

Install Relief Valves in Cryogenic Liquid Lines - When installing piping or fill hose assemblies, make certain a suitable safety relief valves are installed in each section of plumbing between shut-off valves. Trapped liquefied gas will expand as it warms and may burst hoses or piping causing damage or personal injury.

NOTE:

For detail information on the handling of cryogenic liquids, refer to the Compressed Gas Association publication: P-12 "Safe Handling of Cryogenic Liquids." Available from the Compress Gas Association, 1235 Jefferson Davis Highway, Arlington, VA 22202, USA

Please pay attention to all laws, rules and recommendations about handling of cryogenic liquefied gases and materials, that are valid in your country.

2. Product Description

The XL™-LP (LC-L) Series is vacuum-insulated container made of stainless steel, designed for the storage and the transportation of cryogenic liquid nitrogen, oxygen and argon. The containers are approved accordance to the European Directive for portable pressure vessels TPED (2010-35- EU, dated 03.09.2011) and may be used for transport of cryogenic liquid over public roads or for storage or delivery in many applications.

3. Specification

Trademark Model	XLTM0LP	XL™126LP	XLTM186LP
Model Type per Approval	LC70L	LC126L	LC186L
Part Number	LC070L-OC03TPED	LC126L-OC01TPED	
	LC126L-OC03TPED	LC186L-OC03TPED	
Dimensions Diameter, (mm)	508	508	508
Height, (mm)	1100	1370	1720
Weight Empty (Nominal), (kg)	71	82	115
Gross Liquid Capacity, (L)	70	126	186
Net Liquid Capacity, (L)	67	120	180
Normal Evaporation Rate (\% Capacity per Day) Nitrogen	4.2	2.2	1.3
Oxygen- Argon	2.63	1.38	0.81
Safety Device Pressure Relief Valve, (bar)	12	1.5	1.5
Inner Container Bursting Disc, (bar)	12	12	

specification cont...

Trademark Model	XLTM189LP	XLTM250LP
Model Type per Approval	LC189L	LC250L
Part Number	LC189L-OC01TPED	LC250L-OC01TPED LC250L-OC05TPED
	LC189L-OC03TPED	LC250L-OC03TPED LC250L-OC04TPED
Dimensions Diameter, (mm)	660	660^{*}
Height, (mm)	1280	1470
Weight Empty (Nominal), (kg)	116	149
Gross Liquid Capacity, (L)	189	250
Net Liquid Capacity, (L)	181	240
Normal Evaporation Rate (\% Capacity per Day) Nitrogen	1.4	1.8
Oxygen- Argon	1.5	0.88
Safety Device Pressure Relief Valve, (bar)	12	1.5
Inner Container Bursting Disc, (bar)	12	

* Square Base Dimension: 718mm x 718mm

Vented NER based on Useable Liquid capacity. Specifications are subject to change without prior notice.
Note: L-Series cylinder with the following option:

Part Number	Designations
-OC01TPED	Non PBU Round Base Caster
-OC03TPED	PBU Round Base Caster
-OC04TPED	PBU Square Base
-OC05TPED	Non PBU Square Base

For -OC03TPED and -OC04TPED can serve higher pressure but less than 10Bar with condition the new set pressure suit to customer machine/process/application

4. Handling of the Container

The $\mathrm{XL}^{\text {TM }}$ (LC) Series containers are very rugged liquid cylinders. All cryogenic liquid containers have an inner container and on outer casing with a super-insulated vacuum space between them; any abuse (dents, dropping, tip-over, etc.) can affect the integrity of the container's insulation system. When moving the cylinder, the following precautions should be observed:

1. Never lay the container on its side. Always ship, operate, and store the unit in a vertical or upright position.
2. When loading or unloading the container from a truck, use a lift gate, a crane, or a parallel loading dock. Never attempt to manually lift the unit.
3. To move the container over rough surfaces or to lift the container, attach an appropriate sling to the lifting points cut into the welded support posts, and use a portable lifting device that will handle the weight of the container.
4. Liquid cylinders are generally not designed to be permanently mounted on a truck. Depending on the design of the fixation, the permanent transversal vibrations and resonances put a high stress on the inner vessel supports, so that Taylor-Wharton cannot keep the warranty for the vacuum. Please seek advice from Taylor-Wharton in order to look for possible solutions.

Freight Damage Precautions. Any freight damage claims are your responsibility. Cryogenic liquid containers are delivered to your carrier from Taylor-Wharton's dock in new condition. When you receive our product, you may expect it to be in the same condition. For your own protection, take time to visually inspect each shipment in the presence of the carrier's agent before you accept delivery. If any damage is observed, make an appropriate notation on the freight bill. Then, ask the driver to sign the notation before you receive the equipment. You should decline to accept containers that show damage which may affect serviceability.

5. Operation

Following descriptions are most important for a proper handling of all $\mathrm{XL}^{\mathrm{TM}}$ (LC) cylinders. Components and operations will be described, which should be read in any case, before you put the vessel into operation. The components and instruments can be identified from the pictures and drawings.

The model numbers of these $\mathrm{XL}^{\mathrm{TM}}$ (LC) Series indicate their respective gross liquid capacities in liters. The cylinders can be filled liquid according to their net content. All these $\mathrm{XL}^{T M}(L C)$ vessels are suitable for liquid nitrogen, oxygen and argon.

6. Component Description

Components XL ${ }^{\text {TM }}$ (LC) Series

$\mathrm{PI}-1$	Pressure Gauge
$\mathrm{RV}-1$	Relief Valve
$\mathrm{R}-1$	Inner Container Burst Disc
$\mathrm{V}-1$	Liquid Fill / Withdrawal Valve (blue hand wheel)
$\mathrm{LI}-1$	Liquid Level Indicator
$\mathrm{V}-2$	Vent Valve (grey hand wheel)
$\mathrm{R}-2$	Vacuum Evacuation Port Outer Vessel Relief Device
$\mathrm{V}-4$	Pressure Builder Valve (green hand wheel)
$\mathrm{PCV}-1$	Pressure Build Regulator

The Liquid Fill/Withdrawal Valve (V-1)

Liquid product is filled into or withdrawn from the container through the connection controlled by this valve. It is equipped with a connection specifically required for the liquid service, for which the container is configured. If the liquid service changes, this connection must be changed as well. The valve is opened for liquid fill or liquid withdrawal after connecting a transfer hose with compatible fittings to the liquid line connection.

The Pressure Gauge (PI-1)

The pressure gauge displays the internal container pressure in bar or in psi.

The VENT Valve (V-2)

This valve controls a line into the head space of the container. It is used during the fill process. The VENT valve acts as fill point during the pump transfer or to vent the head space area while liquid is filling the inner container during a pressure transfer fill through the LIQUID valve.

The Liquid Level Indicator (LI-1)

The container liquid level indicator (LI-1) is a float type liquid level sensor that indicates container liquid content through a magnetic coupling to a yellow indicator. This gauge is an indication of approximate container contents only and should not be used for filling; liquid cylinder should be filled by weight. If the level indicator does not move when container is filled, it may indicate that the magnetic field between the level indicator and the gauge has been uncoupled. The indicator should recouple itself as the container is empty.

Inner Container Relief Devices

These cylinders have inner container relief valve (RV-1) and inner container burst disc (R-1) with setting of 1.5 bar (152 kPa) and 12 bars (1213 kPa) respectively.

The Pressure Builder Valve (XL ${ }^{\text {TM }}$ (LC)-with P.B. Circuit)

An automatic pressure building circuit is featured by the units with option PB. A pressure building circuit is used to ensure sufficient driving pressure during high withdrawal periods. This function is actuated by opening a pressure builder valve (V-4) that create a path from the liquid in the bottom of the container, through the pressure build regulator (PCV-1), to the gas space in the top. When the pressure builder valve $(\mathrm{V}-4)$ is open, and the container pressure is below the pressure build regulator setting ($0.9-1.2$ barg), liquid taken from the inner container is vaporized in the heat exchanger which is inside the outer casing. The expanding gas is fed into the upper section of the container to build pressure. The resulting pressure will drive the liquid delivery system. When the pressure in the container is above the pressure build regulator setting, the regulator close and the circuit is inoperative.

Flow Diagram XL™-LP (LC-L) Series

PID with PB CIRCUIT

LI-1	Liquid Content Gauge
PBC-1	Pressure Building Coil
PI-1	Pressure Gauge
PCV-1	Pressure Build Regulator
R-1	Inner Container Burst Disc
R-2	Vacuum Evacuation Port/ Outer Vessel Relief Device
RV-1	Relief Valve
V-1	Liquid Fill / Withdrawal Valve
V-2	Vent Valve
V-4	Pressure Builder Valve

7. Filling the Container

Visually inspect the container. Do not attempt to fill container that have broken or missing components. Filling procedures must always ensure there is enough gas head space left on the full container for liquid to expand as it warms.

Taylor-Wharton offers metal hoses for filling and withdrawal as accessories.
WARNING: Filling operations should take place only in well-ventilated areas. Accumulations of product gas can be very dangerous (refer to the safety precautions in the front of these instructions). Maintain adequate ventilation at all time.

a) Filling the container by Pressure Transfer (refer Flow Diagram)

Filling the container this way employs the vent valve (V-2) as full trycock at 95% of the useable volume.

1. Connect a transfer hose to the source tank and cool down the hose by slowly opening the tank valve letting the cold gas flow out to the atmosphere.
2. Then connect the transfer hose to the fitting of the liquid fill/withdrawal valve (V 1) of the container. Unit with PB circuit option, closed the pressure build valve (V4).
3. Open the vent valve ($\mathrm{V}-2$) and the liquid fill/withdrawal valve $(\mathrm{V}-1)$ on the $\mathrm{XL}^{\mathrm{TM}}$ (LC)-container, and finally the valve on the source tank.
4. Observe the liquid content gauge (LI-1) and the opened vent valve ($\mathrm{V}-2$) on the $\mathrm{XL}^{\mathrm{TM}}$ (LC) container. The container is full, if liquid begins to spit / blow out from vent valve ($\mathrm{V}-2$), the valve on the source tank must be closed immediately.
5. Close liquid fill/withdrawal valve (V-1) and vent valve (V-2).
6. Disconnect carefully the transfer hose. Because it may be under pressure and because of the thermal expansion of the liquid in the hose unscrew the connections very carefully and slowly and remove the hose.
Caution: To avoid contamination, close the liquid fill/withdrawal valve (V-1) before disconnecting the transfer hose.

b) Filling the container by weight (refer Flow Diagram)

Using the procedure below, first determine the proper filled weight of each container (refer to filling weight table). The weight derived is then used in the filling procedure that follows:

1. Move the container to filling station scale and weight it both with and without the fill hose attached to determine the weight of the fill line assembly. The difference is the fill line weight.
2. To determine the weight at which the fill should be stopped, add the desired fill weight from filling weight table), the transfer line weight and the tare weight from the container's data plate.
3. Once you have determined the proper full weight for a container, connect a transfer hose to the low-pressure source of liquid.
4. Open the supply valve from storage tank. Then on the $\mathrm{XL}^{\mathrm{TM}}(\mathrm{LC})$ container open the liquid fill/withdrawal valve ($\mathrm{V}-1$) and vent valve $(\mathrm{V}-2)$ to begin the fill.
5. Observe the container pressure and control the pressure of 0.7 to 1 bar by throttling the vent valve (V-2).
6. When full weight is reached, close both liquid fill/withdrawal ($\mathrm{V}-1$) and vent ($\mathrm{V}-2$) valves. Close the liquid supply valve from source liquid.
7. Disconnect carefully the transfer hose. Because it may be under pressure and because of the thermal expansion of the liquid in the hose, unscrew the connections very carefully and then slowly remove the hose.
8. Remove the container from the scale.

Note: The weight calculation must consider the residual liquid in the container that is to be filled. The fill weight shown below are for liquid saturated at atmospheric pressure. The actual fill weight for your application depends on the saturation temperature of liquid in your storage tank and may be determined by weighing.

Determine the proper full weight

To determine the full weight at which the fill should be stopped, add the desired fill weight from the filling weights table, the transfer line weight, and the tare weight from the container's data plate.

Filling Weights Table

	LC70L	LC126L	LC186L	LC189L	LC250L
Nitrogen	54 kg	97 kg	145 kg	146 kg	194 kg
Oxygen	77 kg	137 kg	206 kg	207 kg	274 kg

8. Withdrawal Liquid from the Container

To use the container in liquid delivery service, attach a transfer hose to the LIQUID connection and open the adjacent liquid fill/withdrawal valve (V-1). The pressure in the container will drive liquid product out through the valve when the container pressure exceeds that of the receiver.

The rate of liquid withdrawal from these containers is variable depending on the container pressure and the saturation temperature of the liquid. With liquid saturated at 1.5 bar/152 kPa withdrawal rate of up to 6 liters/min can be obtained.

Caution: As a rule, always close the valve before you disconnect the hose when the container is empty, in order to avoid contamination.

9. Repair and Maintenance

Read the Safety Precautions in the front of this manual before attempting any repairs or maintenance on these containers. Also, follow these additional safety guidelines while performing container maintenance:

Never work on a pressurized container. Open the vent valve (V-2) as a standard practice during maintenance to guard against pressure build-up from residual liquid.

Containers that are in service for oxygen may contain residual oxygen. Many materials and working practices together with oxygen can be a combustion hazard. For that reason, an oxygen container must be sufficiently emptied and rinsed with nitrogen for instance, to remove the oxygen from the container before repair and maintenance work can start.

Use only repair parts suitable for oxygen service. This basic rule is as well valid for containers, which are at that time not in oxygen service, because they may be in the future. Be certain your tools are free of oil and grease. This is a good maintenance practice and helps ensure you do not introduce any contaminants to the plumbing of the container.

Leak test connections after every repair. Pressurize the container with an appropriate inert gas for leak testing. Use only leak test solutions approved by TaylorWharton.

10. Change of Gas Service

The $X^{\text {TM }}$-LP (LC-L) series containers are designed for Oxygen, Nitrogen, and Argon. They can be converted from one service to another within the confines of the services for which the containers are designed, if a change of the gas service should be desired.

For this conversion, the connection fittings on the pipes must be exchanged, further the scale on the liquid level gauge.

Container Modification

Empty the container and open the vent valve to allow residual liquid to evaporate and to prevent the container from building up pressure.

Caution: Always change the fittings, never use adapters if the service shall be changed.

1. Unscrew the fittings of the connections to the vent (gas blow) line, and the liquid (fill/ withdrawal) line -one after the other-. Screw in the new fittings for the desired medium service. Seal with Teflon/ PTFE band or similar, but make sure that the sealing material is clearly declared for oxygen service
2. Exchange the snap on Indicator on the liquid level gauge against the indicator for the new medium.
3. Carry out a leak test on all fittings that have been exchanged. Change the stickers or decals on the container about gas service and possible handling instructions.

11. Purge Procedure

After changing the cylinder gas service, determine the level of purity in the pressure vessel. If the pressure vessel contents purity is unacceptable, perform a purge procedure to reduce contaminants. The following procedure is recommended for the applications:

1. Attach warm nitrogen, N2, source to the liquid fill/withdrawal valve, V-1. Approximately 20 psig pressure should be achieved. The positive pressure must always be maintained in the cylinder during purge procedure to prevent drawing atmospheric contaminants back into the cylinder.
2. Closed all valves. Before venting to atmosphere ensure that such venting is allowed by all applicable site regulations and codes.
3. Open vent valve, V-2. Vent the inner vessel to 5 psig (34 kPa). Close vent valve, V-2.
4. At this low pressure 5 psig (0.35 bar), loosen the compression fitting connection on the pressure build regulator, PCV-1 so that N 2 vented thru this connection. Then retighten the connection while the cylinder is still having positive pressure.
5. Repeat purge procedure 1 through 3 until an acceptable product purity is achieved.
6. After completion of cylinder purge, make sure that all valves are closed.

12. Checking Container Performance

The $\mathrm{XL}^{\text {TM }}$ (LC) containers consist of two containers, one inside the other. The space between the containers acts as a highly efficient thermal barrier including high technology insulation, a vacuum, and a vacuum maintenance system. Each serves a very important part in the useful life of the container. The high technology insulation is very effective in preventing radiated reaching the inner container. Unfortunately, the perfect vacuum cannot be achieved since trace gas molecules begin to enter the vacuum space from the moment of manufacture. The vacuum maintenance system consists of materials which gather trace gas molecules from the vacuum space. The maintenance system can perform its function for years, but it has a limited capacity. When the vacuum maintenance system is saturated it can no longer maintain the vacuum integrity of the container. The change will be very gradual and may go unnoticed for several years. When the vacuum in the insulation space is no longer effective, the following symptoms may appear:

1. With liquid in the container and pressure building coil not in use, the outer casing will be much colder than comparative containers.
2. Frost, indicating the liquid level, may be visible on the outer casing of the container.
3. The container may appear to 'sweat', if the air surrounding the container is hot and humid.
4. The relief valve will open continuously until the container is empty.
5. The container will hold pressure for several days but will not hold liquid.

Similar symptoms can be observed, if the pressure building is activated or damaged. Pressure builder valve ($\mathrm{V}-4$) and / or pressure build regulator (PCV-1) may be defective or need to be re-adjusted / replaced. It can be observed by an iced or very cold regulator, valve and pipes from a damaged vacuum.

13. Check the Normal Evaporation Rate (NER- Test)

If you have reason to suspect a loss of the vacuum integrity, you can check the container's Normal Evaporation Rate. Before you start testing, check first the integrity of the Vacuum Evacuation Port/ Outer Vessel Relief Device (R-2). If the Vacuum Evacuation Port/ Outer Vessel Relief Device (R-2) is defective, there is no more need for the test. In that case the container would need to be re-evacuated after the reason for the vacuum loss was found. In case there is a vacuum leak, for instance by a crack in the outer or inner casing, on the neck tube, or on one of the pipes, a repair would make no more sense for economical reasons. Please contact your dealer.

If the Vacuum Evacuation Port/ Outer Vessel Relief Device (R-2) is ok, carry out the NER- Test. The test measures the actual product loss over time.

Please note: The Pressure Builder Valve (V-4) must remain closed during the test; otherwise the pressure building process would increase the evaporation and distort the test result. It must be ensured, that the Pressure Builder Valve (V-4) closes 100\%.

1. Fill the container with about 68 kg of liquid nitrogen.
2. Close the liquid fill/withdrawal valve (V-1) and open the vent valve (V-2) and allow it to remain open during test.
3. The liquid nitrogen boils, because it is pressurized. After 24 hours the saturation process should be finished, so that the evaporation from the container is stabilized. Then weight it, and record the weight, time and date.
4. Repeat the weighting after 24 hours and again after 24 hours.
5. The results will be most reliable, if the container is not moved during this time. The resulting weight loss over 24 hours is the daily evaporation rate. You can of course as well measure weight and time on any times of the day to find the hourly evaporation and to calculate the daily evaporation rate. The measured values must be a linear function of time.

Compare the results of your test to the 'as manufactured' NER value in the specification sections of this manual. A container in service should maintain an NER value of less than two times the new specification. Any test result greater than two times the listed value is indicative of a filed or failing vacuum. If NER is found to be high, contact TaylorWharton or your distributor.

An increased evaporation rate is shown by a fast pressure building, but it is not dangerous, because the container is protected by a safety valve and a burst disc. There are no objections against a further operation of the container, if there is a continuous and enough withdrawal, at least until a blowing safety valve shows, that the evaporation rate of the container is to high and the vacuum to deteriorate for the present application.

14. The Liquid Content Gauge

This device consists of the gauge assembly with a float rod beneath an indicator under a clear plastic protective cover. When the gauge is assembled, a level indicator ring is magnetically coupled to the top of a float rod and moves up or down with the changing liquid level in the container

If the indicator ring stays in the bottom position, although there is still liquid in the container, this can be a sign for an interrupted magnetic coupling between the ring and the float rod. The indicator ring will be picked up again by the magnetic field once the container is empty. You can also try to lift the ring in its position with a magnet from outside.

15. Replacement Instruction

Caution: Please refer to section "Repair and Maintenance" before doing the following replacement.

Contents Gauge Replacement

Removing the Full View Contents Gauge

1. Vent all pressure from container.
2. Remove the protective cover by removing three bolts from the base of the cover.
3. Unscrew the gauge body using a wrench on hex fitting at base of the indicator.
4. Lift the entire gauge assembly free of the container. The gauge assembly is long and may be very cold. Gloves should be used to protect your skin.

WARNING: Cold surfaces should never be handled with bare skin. Use gloves and other protective clothing when performing this procedure.

Liquid Content Gauge Installation

Before installing a new liquid, content gauge or repaired, inspect the gasket seals. If any damage is apparent, replace the gasket.

1. When inserting the gauge assembly, lower the float rod through the gauge opening until about 8 inches (203 mm) of the float rod remains above the container.
2. Grasp the clear cover portion of the gauge assembly with two fingers so that the assembly hangs free and "plumb."
3. Lower the assembly about 4 inches (102 mm) slowly and try to keep the rod in the center of the threaded entrance hole as you do. If you are careful during this portion of insertion, you will drop the float rod straight through the guide ring inside the cylinder.

4. To confirm that the rod is correctly positioned in the cylinder, stop where you can still grasp the top of the rod and try to swing the lower end from side to side.

5. When the rod is engaged in the guide ring, the rod will be restricted to lower end movement of about $1 / 2$ " inches (12.7 mm); if the you can feel greater movement, withdraw the rod to the point where its top is 8 inches $(203 \mathrm{~mm})$ above the gauge opening and try again.
6. When you are satisfied that the float rod is correctly installed, lower the assembly the rest of the way into the container until the top portion threads can be engaged.
7. Screw the gauge in place and hand torque to about $20 \mathrm{ft}-\mathrm{lbs}(2.8 \mathrm{kgf} \mathrm{m})$. Leak check the connection of gauge to the flange.

CAUTION:
When installing the gauge assembly, care must be taken to ensure that the float rod is inserted through "guide ring" located on the liquid withdrawal line inside the container. If the gauge does not engage this ring, the contents indication will be inaccurate, or the gauge may be damaged in use.

Hand Valve

Hand valves are an integral part of the container, and the valve bodies rarely need replacement. However, the handwheel and internal parts of the valves are renewable. The illustration below is a view of the valve replaceable part used on Taylor-Wharton liquid container.

Valve Repair Kit Assembly

Fits: 3/8" Rego Globe / IMI-Cash Globe valve

KIT PARTS

Valve Disassembly Instructions

1. Open valve by turning Handwheel counterclockwise as far as it will go to release any trapped gas in the system.
2. Using a large adjustable wrench to hold valve body, remove Bonnet by turning counterclockwise with a $15 / 16$-inches socket wrench that capable of developing at least $80 \mathrm{ft} \mathrm{lbs}(11 \mathrm{kgf} \mathrm{m})$ torque.
3. Remove the handwheel assembly from the valve body and discard. Inspect body and clean if necessary; be sure interior and seal areas are free from dirt, residue and foreign particles.

CAUTION:

Do not apply force after valve is fully open.
Do not scratch or mark internal surface of valve.

Valve Replacement Instructions

1. Thread Handwheel Assembly into valve body until properly seated.
2. Turn Handwheel completely clockwise to close valve. Re-pressurize container and leak check valve.

Relief Valve / Inner Container Bursting Disc / Pressure Gauge

Unscrew the part to be removed by suitable socket wrench. Apply approved sealing tape to the thread of new parts to be installed. Using a suitable socket wrench, screw back the parts to its connection. Leak test connection after replacement (refer to section "Repair and Maintenance").

COMPONENT FOR SQUARE BASED ASSEMBLY

Item No.	Description	Part No.
1	Cap screw, Hex Head, $1 / 2^{\prime \prime}-13$ UNC, S.S.	$6164-1753$
2	Hex Nut, Nylon Insert	$6331-1183$
3	Handle Assembly	XL65-9C31
4	Flat Washer, S.S.	$6460-9024$
5	Spring Washer, S.S.	$6460-9025$
6	Flat Washer, Teflon	$6160-9026$
7	Caster, Swivel 4 in. Dia. Wheel	$7300-9021$
8	Caster, Rigid 4 in. Dia. Wheel	$7300-9022$
9	Carriage Bolt,3/8"-16UNC, 1 1/4" L, S.S.	$6160-4766$
10	Hex Head Cap screw,3/8"-16UNC, 1" L, S.S	$6164-1133$
11	Elastic Stop Nut, S.S.	$6368-9110$

16. Trouble Shooting Chart

Symptom	Possible Cause	Corrective Action
1. Operation pressure always to low	1. Safety valve open at low pressure. 2. Burst disk of the inner vessel broken, or safety valve does not close properly. 3. Leaking pipe, valve or others component. 4. Very cold, fresh liquid	1. Replace safety valve. 2. Replace burst disk and check the safety valve. 3. Carry out leak tests and repair detected leaks. 4. Container will build pressure over time, or an external pressure source can be used to pressure container. IF the container with PB circuit, open pressure building valve.
2. Pressure indicator on a full container displays no or a too low pressure.	1. Pressure indicator damaged. 2. Leaks in valve or plumbing. 3. Open inner container safety head. 4. Liquid too cold. 5. Faulty safety valve.	1. Replace damaged pressure indicator. 2. Leak test and repair leaks. For valve repair, see hand valve repair section. 3. Replace the damaged safety head. 4. Allow container to stand and build pressure. 5. Replace safety valve.
3. Container is very cold outside, it is sweating, perhaps it's partly iced outside, to the high of the liquid level. It cannot keep the liquid over night; the safety valve is blowing gas.	Vacuum lost, check outer vessel's burst disk if broken.	Contact your Taylor-Wharton Or your dealer for further advice. Do not fill the vessel again with liquid
4. Container lost gas for a certain while after it has been filled.	Normal procedure. Happens because of evaporation during cooling of the container and boiling of the liquid until the saturation process is over.	No special action required. The symptom is over when the liquid temperature boiled down to the saturation temperature.
5. Liquid gauge is always on full, without movement.	Float rod is blocked within the guidance ring.	Move the container to unblock.

Disclaimer

Taylor-Wharton is not being liable for any consequential, special, or incidental damages or accidents resulting from the delivery, use, or maintenance of delivered $\mathrm{XL}^{\mathrm{TM}}$ (LC)containers (including loss of any liquid product or materials stored in liquid product), or from any cause whatsoever by accepting delivery of the products sold hereunder. Any claims on the containers must be reported immediately in written form to TW after receipt of the $\mathrm{XL}^{\mathrm{TM}}$ (LC)-container, or whenever a damaged becomes obvious. The $\mathrm{XL}^{\mathrm{TM}}$ (LC)-container may not be put or kept in operation before clarification and repair of the damages, and it must be put out of any service and stored in a suitable form. The LC-container may be put in service again only after written consent of TW.

Furthermore, the 'Terms of Sales or Acknowledgement' of Taylor-Wharton apply.

TAYLOR- WHARTON MALAYSIA SDN. BHD
Lot Nos. PT5073, 5076 \& 5077
Jalan Jangur 28/43
Hicom Industrial Estate
40400 Shah Alam
Selangor Darul Ehsan, Malaysia
Fax: 0060351911472

